如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,-),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).

(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請(qǐng)說(shuō)明理由;
(3)在以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.

(1)y=x2-x+2  A(2,0),B(6,0)
(2)存在,2
(3)y=-x+2

解析解:(1)如圖,

由題意,設(shè)拋物線的解析式為y=a(x-4)2-(a≠0)
∵拋物線經(jīng)過(guò)(0,2)
∴a(0-4)2-=2
解得:a=,
∴y=(x-4)2-,
即:y=x2-x+2
當(dāng)y=0時(shí),x2-x+2=0
解得:x=2或x=6
∴A(2,0),B(6,0);
(2)存在,
如圖2,由(1)知:拋物線的對(duì)稱軸l為x=4,

因?yàn)锳、B兩點(diǎn)關(guān)于l對(duì)稱,連接CB交l于點(diǎn)P,則AP=BP,所以AP+CP=BC的值最小
∵B(6,0),C(0,2)
∴OB=6,OC=2
∴BC=2,
∴AP+CP=BC=2,
∴AP+CP的最小值為2;
(3)如圖3,連接ME,

∵CE是⊙M的切線
∴ME⊥CE,∠CEM=90°
由題意,得OC=ME=2,∠ODC=∠MDE
∵在△COD與△MED中
,
∴△COD≌△MED(AAS),
∴OD=DE,DC=DM
設(shè)OD=x則CD=DM=OM-OD=4-x
則RT△COD中,OD2+OC2=CD2,
∴x2+22=(4-x)2
∴x=,
∴D(,0)
設(shè)直線CE的解析式為y=kx+b
∵直線CE過(guò)C(0,2),D(,0)兩點(diǎn),
,
解得:。
∴直線CE的解析式為y=-x+2。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知OA=2,OC=4,⊙M與軸相切于點(diǎn)C,與軸交于A,B兩點(diǎn),∠ACD=90°,拋物線經(jīng)過(guò)A,B,C三點(diǎn).
(1)求證:∠CAO=∠CAD;
(2)求弦BD的長(zhǎng);
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P使ΔPBC是以BC為腰的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長(zhǎng)OA、OC分別為12cm、6cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且18a+c=0.

(1)求拋物線的解析式.
(2)如果點(diǎn)P由點(diǎn)A開始沿AB邊以1cm/s的速度向終點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開始沿BC邊以2cm/s的速度向終點(diǎn)C移動(dòng).
①移動(dòng)開始后第t秒時(shí),設(shè)△PBQ的面積為S,試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
②當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).

(1)當(dāng)α=60°時(shí),求CE的長(zhǎng);
(2)當(dāng)60°<α<90°時(shí),
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
②連接CF,當(dāng)CE2-CF2取最大值時(shí),求tan∠DCF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線yn=-(x-an)2+an(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(,0)和An(bn,0).當(dāng)n=1時(shí),第1條拋物線y1=-(x-a1)2+a1與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類推.

(1) 求a1、b1的值及拋物線y2的解析式;
(2) 拋物線y3的頂點(diǎn)坐標(biāo)為(____,___);依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為(_____,_____)(用含n的式子表示);所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系式是_____________;
(3) 探究下列結(jié)論:
①若用An-1 An表示第n條拋物線被x軸截得的線段的長(zhǎng),則A0A1=______,An-1 An=____________;
②是否存在經(jīng)過(guò)點(diǎn)A1(b1,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長(zhǎng)度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我區(qū)某房地產(chǎn)開發(fā)公司于2013年5月份完工一商品房小區(qū),6月初開始銷售,其中6月的銷售單價(jià)為0.7萬(wàn)元/m2,7月的銷售單價(jià)為0.72萬(wàn)元/m2,且每月銷售價(jià)格(單位:)與月份x(6≤x≤11,x為整數(shù))之間滿足一次函數(shù)關(guān)系,每月的銷售面積為(單位:),其中y2=-2000x+26000(6≤x≤11,x為整數(shù)).
(1)求與月份的函數(shù)關(guān)系式;
(2)6~11月中,哪一個(gè)月的銷售額最高?最高銷售額為多少萬(wàn)元?
(3)2013年11月時(shí),因受某些因素影響,該公司銷售部預(yù)計(jì)12月份的銷售面積會(huì)在11月銷售面積基礎(chǔ)上減少,于是決定將12月份的銷售價(jià)格在11月的基礎(chǔ)上增加,該計(jì)劃順利完成.為了盡快收回資金,2014年1月公司進(jìn)行降價(jià)促銷,該月銷售額為(1500+600a)萬(wàn)元.這樣12月、1月的銷售額共為萬(wàn)元,請(qǐng)根據(jù)以上條件求出的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷售量y件和銷售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:

銷售單價(jià)(元)
 
x
 
銷售量y(件)
 
 
 
銷售玩具獲得利潤(rùn)w(元)
 
 
 
(2)在(1)問(wèn)條件下,若商場(chǎng)獲得了10000元銷售利潤(rùn),求該玩具銷售單價(jià)x應(yīng)定為多少元.
(3)在(1)問(wèn)條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=的圖像經(jīng)過(guò)B、C兩點(diǎn).

(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖像探索:當(dāng)y>0時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件元,出廠價(jià)為每件元,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于元.如果李明想要每月獲得的利潤(rùn)不低于元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案