【題目】(1)如圖1所示,在中,,,點在斜邊上,點在直角邊上,若,求證:.
(2)如圖2所示,在矩形中,,,點在上,連接,過點作交(或的延長線)于點.
①若,求的長;
②若點恰好與點重合,請在備用圖上畫出圖形,并求的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=(x﹣2m)2+3m﹣1(m是常數(shù))與直線y=x+1有兩個交點,且這兩個交點分別在拋物線對稱軸的兩側(cè),則m的取值范圍是( )
A.m<2B.m>2C.mD.m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2kx+3k+4.
(1)拋物線經(jīng)過原點時,求k的值.
(2)頂點在x軸上時,求k的值;
(3)頂點在y軸上時,求k的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個根
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標(biāo);
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,矩形ABCD的對角線AC與BD相交于點O,點O關(guān)于直線AD的對稱點是E,連接AE、DE.
(1)試判斷四邊形AODE的形狀,不必說明理由;
(2)請你連接EB、EC,并證明EB=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2.
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸,y軸分別交于B,C兩點,拋物線 經(jīng)過B,C兩點,點A是拋物線與x軸的另一個交點.
(1)求出點B和點C的坐標(biāo).
(2)求此拋物線的函數(shù)解析式.
(3)在拋物線x軸上方存在一點P(不與點C重合),使,請求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中有4個大小、質(zhì)地完全相同的乒乓球,球面上分別標(biāo)有數(shù)-1,2,-3,4.
(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率為________.
(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com