如圖,矩形ABCD中,ABBC,對角線AC、BD相交于點O,則圖中的等腰三角形有

A.2個            B.4個            C.6個            D.8個
B
分析:本題需先根據(jù)矩形的性質得出OA=OB=OC=OD,從而得出圖中等腰三角形中的個數(shù),即可得出正確答案.
解答:解:∵矩形ABCD中,AB<BC,對角線AC、BD相交于點O,
∴OA=OB=OC=OD,
∴圖中的等腰三角形有△AOB、△AOD、△COD、△BOC四個.
故選B.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•舟山)以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側作等腰直角三角形,直角頂點分別為E、F、G、H,順次連接這四個點,得四邊形EFGH.
(1)如圖1,當四邊形ABCD為正方形時,我們發(fā)現(xiàn)四邊形EFGH是正方形;如圖2,當四邊形ABCD為矩形時,請判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當四邊形ABCD為一般平行四邊形時,設∠ADC=α(0°<α<90°),
①試用含α的代數(shù)式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•北京)閱讀下面材料:
小偉遇到這樣一個問題,如圖1,在梯形ABCD中,AD∥BC,對角線AC,BD相交于點O.若梯形ABCD的面積為1,試求以AC,BD,AD+BC的長度為三邊長的三角形的面積.

小偉是這樣思考的:要想解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可.他先后嘗試了翻折,旋轉,平移的方法,發(fā)現(xiàn)通過平移可以解決這個問題.他的方法是過點D作AC的平行線交BC的延長線于點E,得到的△BDE即是以AC,BD,AD+BC的長度為三邊長的三角形(如圖2).
參考小偉同學的思考問題的方法,解決下列問題:
如圖3,△ABC的三條中線分別為AD,BE,CF.
(1)在圖3中利用圖形變換畫出并指明以AD,BE,CF的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以AD,BE,CF的長度為三邊長的三角形的面積等于_____.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

菱形具有而矩形不一定具有的性質是                               (    )
A.對角線互相垂直B.對角線相等C.對角線互相平分D.對角互補

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若一個多邊形的每個外角都等于,則它的邊數(shù)是
A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題8分)如圖,四邊形中,,平分,.

(1)求證:四邊形是菱形;
(2)若點的中點,試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,菱形的對角線相交于點請你添加一個條件:   ,使其為正方形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,口ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F,若△FDE的周長為8,△FCB的周長為22,則FC的長為_

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖9,等腰梯形ABCD的邊BCx軸上,點Ay軸的正方向上,A( 0, 6 ),D ( 4,6),且AB.

(1)求點B的坐標;
(2)求經過A、BD三點的拋物線的解析式;
(3)在(2)中所求的拋物線上是否存在一點P,

圖9

 
使得?若存在,請求出該點坐標,

若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案