如圖所示,已知直線l的解析式為y=-
34
x+6
,并且與x軸、y精英家教網(wǎng)軸分別交于點(diǎn)A、B.
(1)求A、B兩點(diǎn)的坐標(biāo).
(2)一個(gè)半徑為1的動(dòng)圓⊙P (起始時(shí)圓心P在原點(diǎn)O處),以4個(gè)單位/秒的速度沿x軸正方向運(yùn)動(dòng),問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間與直線l相切.
(3)若在圓開(kāi)始運(yùn)動(dòng)的同時(shí),一動(dòng)點(diǎn)Q從B出發(fā),沿BA方向以5個(gè)單位/秒的速度運(yùn)動(dòng),在整個(gè)運(yùn)動(dòng)過(guò)程中,問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間直線PQ經(jīng)過(guò)△AOB的重心M?
分析:(1)本題需先根據(jù)直線l的解析式與x軸、y軸分別相交,即可得出A、B兩點(diǎn)的坐標(biāo).
(2)本題需先求出動(dòng)圓⊙P與直線l相切時(shí)移動(dòng)的距離再除以⊙P運(yùn)動(dòng)的速度即可得出結(jié)果.
(3)本題需先設(shè)運(yùn)動(dòng)時(shí)間為t,然后得出點(diǎn)P與Q的橫坐標(biāo)相同,再求出△AOB的重心的坐標(biāo)即可求出4t的值,從而解出t的值.
解答:解:(1)A(8,0)(0,6)

(2)當(dāng)⊙P運(yùn)動(dòng)到P1時(shí),與直線L相切
設(shè)切點(diǎn)為D
則P1D=1
∵△ADP1∽△AOB
AD
AO
=
DP1
OB

AD
8
=
1
6

∴AD=
4
3

P1A=
5
3

∴OP1=8-
5
3
=
19
3

∵動(dòng)圓⊙P以4個(gè)單位/秒的速度沿x軸正方向運(yùn)動(dòng),
∴經(jīng)過(guò)
19
3
÷4
=
19
12
秒與直線l相切.
當(dāng)⊙P運(yùn)動(dòng)到P2時(shí),則P2A=
5
3

∴OP2=8+
5
3
=
29
3

∴經(jīng)過(guò)
29
3
÷
4=
29
12
秒與直線l相切.

(3)設(shè)運(yùn)動(dòng)時(shí)間為t,則
BQ=5t,OP=4t
則點(diǎn)Q的橫坐標(biāo)為4t
∴點(diǎn)P與Q的橫坐標(biāo)相同
∴PQ∥y軸
∵△AOB的重心的坐標(biāo)為(
24
9
,2)

∴PQ過(guò)△AOB的重心時(shí)
則4t=
24
9

t=
2
3

∴經(jīng)過(guò)
2
3
秒直線PQ經(jīng)過(guò)△AOB的重心M.
點(diǎn)評(píng):本題主要考查了一次函數(shù)的綜合應(yīng)用,在解題時(shí)要注意把一次函數(shù)的圖象和性質(zhì)與相似三角形相結(jié)合是本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知直線L過(guò)點(diǎn)A(0,1)和B(1,0),P是x軸正半軸上的動(dòng)點(diǎn),OP的垂直平分線交L于點(diǎn)Q,交x軸于點(diǎn)M.
(1)直接寫(xiě)出直線L的解析式;
(2)設(shè)OP=t,△OPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;并求出當(dāng)0<t<2時(shí),S的最大值;
(3)直線L1過(guò)點(diǎn)A且與x軸平行,問(wèn)在L1上是否存在點(diǎn)C,使得△CPQ是以Q為直角頂點(diǎn)的等腰直角精英家教網(wǎng)三角形?若存在,求出點(diǎn)C的坐標(biāo),并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖所示,已知直線a∥b,被直線L所截,如果∠1=69°36′,那么∠2=
69
36
分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知直線AB過(guò)點(diǎn)C(1,2),且與x軸、y軸分別交于點(diǎn)A、B,CD⊥x軸于D,CE⊥y軸于E,CF交y軸于G,交x軸于F.(F在原點(diǎn)O的左側(cè))
(1)當(dāng)直線AB的位置正好使得△ACD≌△CBE時(shí),求A點(diǎn)的坐標(biāo)及直線AB的解析式.
(2)若S四邊形ODCE=S△CDF,當(dāng)直線AB的位置正好使得FC⊥AB時(shí),求A點(diǎn)的坐標(biāo)及BC的長(zhǎng).
(3)在(2)成立的前提下,將△FOG延y軸對(duì)折得△F′O′G′(對(duì)折后F、O、G的對(duì)應(yīng)點(diǎn)分別為F′、O′、G′),將△F′O′G′沿x軸正方向精英家教網(wǎng)平移,設(shè)平移過(guò)程中△F′O′G′與四邊形ODCE重疊部分面積為y,OO′的長(zhǎng)為x(0≤x≤1),求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知直線y=kx-2經(jīng)過(guò)M點(diǎn),求此直線與x軸交點(diǎn)坐標(biāo)和直線與兩坐標(biāo)軸圍成三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示:已知直線y=
1
2
x
與雙曲線y=
k
x
(k>0)
交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.
(1)求k的值;
(2)過(guò)A點(diǎn)作AC⊥x軸于C點(diǎn),求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案