精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線y= x﹣6分別交x軸,y軸于A,B,M是反比例函數y= (x>0)的圖象上位于直線上方的一點,MC∥x軸交AB于C,MD⊥MC交AB于D,ACBD=4 ,則k的值為(
A.﹣3
B.﹣4
C.﹣5
D.﹣6

【答案】A
【解析】解:過點D作DE⊥y軸于點E,過點C作CF⊥x軸于點F,
令x=0代入y= x﹣6,
∴y=﹣6,
∴B(0,﹣6),
∴OB=6,
令y=0代入y= x﹣6,
∴x=2
∴(2 ,0),
∴OA=2 ,
∴勾股定理可知:AB=4
∴sin∠OAB= = ,cos∠OAB= =
設M(x,y),
∴CF=﹣y,ED=x,
∴sin∠OAB= ,
∴AC=﹣ y,
∵cos∠OAB=cos∠EDB= ,
∴BD=2x,
∵ACBD=4 ,
∴﹣ y×2x=4 ,
∴xy=﹣3,
∵M在反比例函數的圖象上,
∴k=xy=﹣3,
故選(A)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數根.第三邊BC的長為5,當△ABC是等腰三角形時,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論: ①AC=FG;②SFAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,
其中正確的結論的個數是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC 是等邊三角形,點P 是三角形內的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周長為36,則PD+PE+PF=( )

A.12
B.8
C.4
D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】深圳市某校對初三綜合素質測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分 100 分)兩部分組成,其中測試成績占 80%,平時成績占 20%,并且當綜合評價得分大于或
等于80 分時,該生綜合評價為A 等.
(1)小明同學的測試成績和平時成績兩項得分之和為185 分,而綜合評價得分為91 分,則小明同學測試成績和平時成績各得多少分?
(2)某同學測試成績?yōu)?0 分,他的綜合評價得分有可能達到A 等嗎?為什么?
(3)如果一個同學綜合評價要達到A 等,他的測試成績至少要多少分?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AB為⊙O的直徑,BC⊥AB于B,且BC=AB,D為半圓⊙O上的一點,連接BD并延長交半圓⊙O的切線AE于E.
(1)如圖1,若CD=CB,求證:CD是⊙O的切線;

(2)如圖2,若F點在OB上,且CD⊥DF,求 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了解本校九年級學生足球訓練情況,隨機抽查該年級若干名學生進行測試,然后把測試結果分為4個等級:A、B、C、D,并將統(tǒng)計結果繪制成兩幅不完整的統(tǒng)計圖.請根據圖中的信息解答下列問題:
(1)補全條形統(tǒng)計圖
(2)該年級共有700人,估計該年級足球測試成績?yōu)镈等的人數多少人;
(3)在此次測試中,有甲、乙、丙、丁四個班的學生表現突出,現決定從這四個班中隨機選取兩個班在全校舉行一場足球友誼賽.請用畫樹狀圖或列表的方法,求恰好選到甲、乙兩個班的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC的三個頂點分別為A(1,2),B(4,2),C(4,4).若反比例函數y= 在第一象限內的圖象與△ABC有交點,則k的取值范圍是(
A.1≤k≤4
B.2≤k≤8
C.2≤k≤16
D.8≤k≤16

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內接四邊形,⊙O的半徑為2,∠B=135°,則 的長(
A.2π
B.π
C.
D.

查看答案和解析>>

同步練習冊答案