【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,以AB的中點(diǎn)D為圓心,作圓心角為90°的扇形DEF,點(diǎn)C恰在EF上,設(shè)∠BDF=α(0°<α<90°),當(dāng)α由小到大變化時(shí),圖中陰影部分的面積( )
A.由小到大 B.由大到小 C.不變 D.先由小到大,后由大到小
【答案】C.
【解析】
試題分析:作DM⊥AC于M,DN⊥BC于N,連接DC,∵CA=CB,∠ACB=90°,∴∠A=∠B=45°,DM=AD=AB,DN=BD=AB,∴DM=DN,∴四邊形DNCN是正方形,∴∠MDN=90°,∴∠MDG=90°﹣∠GDN,∵∠EDF=90°,∴∠NDH=90°﹣∠GDN,∴∠MDG=∠NDH,在△DMG和△DNH中,∵∠MDG=∠NDH,∠DMG=∠DNH,DM=DH,∴△DMG≌△DNH,∴四邊形DGCH的面積=正方形DMCN的面積,∵正方形DMCN的面積=,∴四邊形DGCH的面積=,∵扇形FDE的面積==,∴陰影部分的面積=扇形面積﹣四邊形DGCH的面積=(定值),故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次數(shù)學(xué)趣味競(jìng)賽共有10道題目,每道題答對(duì)得10分,答錯(cuò)或不答得0分,全班40名同學(xué)參加了此次競(jìng)賽,他們的得分情況如下表所示
成績(jī)(分) | 50 | 60 | 70 | 80 | 90 | 100 |
人數(shù) | 2 | 5 | 13 | 10 | 7 | 3 |
則全班40名同學(xué)的成績(jī)的中位數(shù)和眾數(shù)分別是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于換季,一家服裝店的老板想將某服裝打折銷(xiāo)售,于是她和正在上七年級(jí)的兒子商量打折方案,下面是她和兒子商量時(shí)的對(duì)話情景:
媽媽?zhuān)骸皟鹤,每件衣服按?biāo)價(jià)的5折出售,可以嗎?”
兒子:“若每件衣服按標(biāo)價(jià)的5折出售會(huì)虧本30元.”
媽媽?zhuān)骸澳敲考路礃?biāo)價(jià)的8折出售呢?”
兒子:“若每件衣服按標(biāo)價(jià)的8折出售將會(huì)賺60元.”
……
請(qǐng)根據(jù)上面的信息,解決問(wèn)題:
(1)求這種服裝的標(biāo)價(jià).
(2)若要不虧本,至少打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,∠ABC的平分線BD交AC于D,DE⊥AB于點(diǎn)C,若DE=3cm,則AC=( )
A.9cm
B.6cm
C.12cm
D.3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠B、∠C的平分線相交于F,過(guò)點(diǎn)F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論:①△BDF、△CEF都是等腰三角形; ②DE=BD+CE;③△ADE的周長(zhǎng)為AB+AC;④BD=CE.其中正確的是( )
A.③④
B.①②
C.①②③
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB⊥BC,AD⊥DC,∠BAD=120°,在BC、CD上分別找一點(diǎn)M、N,當(dāng)△AMN周長(zhǎng)最小時(shí),∠AMN+∠ANM的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),B(8,0),C(8,6)三點(diǎn).
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點(diǎn)P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿(mǎn)足條件的P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△BCE中,點(diǎn)A時(shí)邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3).
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
(3)直線l經(jīng)過(guò)A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過(guò)點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com