已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE中點,連結(jié)DF、CF.

(1)如圖1,當(dāng)點D在AB上,點E在AC上,請直接寫出此時線段DF、CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);

(2)如圖2,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)45°時,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷;

(3)如圖3,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)90°時,若AD=1,AC=,求此時線段CF的長(直接寫出結(jié)果).

 

 

【答案】

(1)DF=CF,且DF⊥CF;(2)(1)中的結(jié)論仍然成立,證明見解析;(3).

【解析】

試題分析:(1)根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”可知DF=BF,根據(jù)∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;

(2)延長DF交BC于點G,先證明△DEF≌△GCF,得到DE=CG,DF=FG,根據(jù)AD=DE,AB=BC,得到BD=BG又因為∠ABC=90°,所以DF=CF且DF⊥BF;

(3)延長DF交BA于點H,先證明△DEF≌△HBF,得到DE=BH,DF=FH,根據(jù)旋轉(zhuǎn)條件可以△ADH為直角三角形,由△ABC和△ADE是等腰直角三角形,AC= ,可以求出AB的值,進(jìn)而可以根據(jù)勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.

試題解析:(1)∵∠ACB=∠ADE=90°,點F為BE中點,∴DF=BE,CF=BE. ∴DF=CF.

∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.

∵BF=DF,∴∠DBF=∠BDF.

∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.

同理得:∠CFE=2∠CBF,

∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.

∴DF=CF,且DF⊥CF.

(2)(1)中的結(jié)論仍然成立.證明如下:

如圖,此時點D落在AC上,延長DF交BC于點G.

∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.

∵F為BE中點,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.

∵AD=DE,∴AD=GB.

∵AC=BC,∴AC-AD=BC-GB. ∴DC=GC.

∵∠ACB=90°,∴△DCG是等腰直角三角形.

∵DF=GF,∴DF=CF,DF⊥CF.

(3)如圖,延長DF交BA于點H,

∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.

∴∠AED=∠ABC=45°.

∵由旋轉(zhuǎn)可以得出,∠CAE=∠BAD=90°,

∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.

∵F是BE的中點,∴EF=BF. ∴△DEF≌△HBF. ∴ED=HB.

∵AC=,在Rt△ABC中,由勾股定理,得AB=4.

∵AD=1,∴ED=BH=1.∴AH=3.

在Rt△HAD中,由勾股定理,得DH=,

∴DF=,∴CF=.

∴線段CF的長為.

考點:1.等腰直角三角形的性質(zhì);2.全等三角形的判定和性質(zhì);3.勾股定理.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE中點,連接DF、CF.
(1)如圖1,當(dāng)點D在AB上,點E在AC上,請直接寫出此時線段DF、CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)45°時,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)90°時,若AD=1,AC=2
2
,求此時線段CF的長(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南崗區(qū)二模)如圖,已知△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,求證:AD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC和△BAD中,AC=DB,若不增加任何字母與輔助線,要證明△ABC≌△BAD;則還需要增加一個條件是
AD=BC
AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC和△ABD均為等腰直角三角形,∠ACB=∠BAD=90°,點P為邊AC上任意一點(點P不與A、C兩點重合),作PE⊥PB交AD于點E,交AB于點F.
(1)求證:∠AEP=∠ABP.
(2)猜想線段PB、PE的數(shù)量關(guān)系,并證明你的猜想.
(3)若P為AC延長線上任意一點(如圖②),PE交DA的延長線于點E,其他條件不變,(2)中的結(jié)論是否成立?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC和△A′B′C′,AD是BC邊上的高,A′D′是B′C′邊上的高,AD=A′D′,AB=A′B′,AC=A′C′,則∠C和∠C′的關(guān)系是
不一定相等
不一定相等
.(填“相等”“不一定相等”或“一定不相等”)

查看答案和解析>>

同步練習(xí)冊答案