【題目】的弦的半徑之比為,則弦所對的圓周角等于________

【答案】

【解析】

OCABC,APB和∠ADB為弦AB所對的圓周角,根據(jù)垂徑定理得AC=BC,由于AB:OA=:1,則AC:OA=:2,在RtOAC中,根據(jù)余弦的定義可求出∠OAC=30°,則∠AOB=120°,然后根據(jù)圓周角定理得到∠APB=AOB=60°,根據(jù)圓內接四邊形的性質得到∠ADB=180°-APB=120°.

OCABC,APB和∠ADB為弦AB所對的圓周角,
OCAB,
AC=BC,
AB:OA=:1,
AC:OA=:2,
RtOAC中,cosOAC=,
∴∠OAC=30°,
OA=OB,
∴∠OBA=30°,
∴∠AOB=120°,
∴∠APB=AOB=60°,
∴∠ADB=180°-APB=120°,
即弦AB所對的圓周角等于60°120°.
故答案為60°120°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,平分,,.線段的長度為:________;求線段的長度和的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y=y1+y2 , 其中y1x成反比例,y2與(x﹣2)成正比例.當x=1時,y=﹣1;x=3時,y=3.求:

(1)yx的函數(shù)關系式;

(2)當x=﹣1時,y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點 (不與B,C重合),∠ADE=∠B=α,DEAC于點E,且 .下列結論: ①△ADE∽△ACD;BD=6時,△ABD△DCE全等;③△DCE為直角三角形時,BD8;④CD2=CECA.其中正確的結論是________(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)給出以下幾個命題:

長度相等的兩條弧是等弧;相等的弧所對的弦相等;垂直于弦的直線平分這條弦并且平分弦所對的兩條。鈍角三角形的外接圓圓心在三角形外面;矩形的四個頂點必在同一個圓上.其中真命題的個數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,、的切線,切點分別為、的延長線與的直徑的延長線交于點,連接,

探索的位置關系,并加以證明;

,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,為垂足,那么下列等式成立的有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,E為垂足,連結DF,則∠CDF等于(  )

A. 80° B. 70° C. 65° D. 60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把平面內一條數(shù)軸x繞原點O逆時針旋轉角θ(0°<θ<90°)得到另一條數(shù)軸y,x軸和y軸構成一個平面斜坐標系.規(guī)定:過點Py軸的平行線,交x軸于點A,過點Px軸的平行線,交y軸于點B,若點Ax軸上對應的實數(shù)為a,點By軸上對應的實數(shù)為b,則稱有序實數(shù)對(a,b)為點P的斜坐標,在某平面斜坐標系中,已知θ=60°,點M′的斜坐標為(3,2),點N與點M關于y軸對稱,則點N的斜坐標為_____

查看答案和解析>>

同步練習冊答案