【題目】半徑為R的⊙O中,弦AB=2R,弦CD=R,若兩弦的弦心距分別為OE、OF,則OE∶OF等于( )
A. 2∶1 B. 3∶2 C. 2∶3 D. 0
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,直線AB∥CD,E是AB與AD之間的一點,連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC.
證明過程如下:
證明:過點E作EF∥AB,
∵AB∥DC,EF∥AB(輔助線的作法),
∴EF∥DC
∴∠C=∠CEF.
∵EF∥AB,∴∠B=∠BEF
∴∠B+∠C=∠CEF+∠BEF
即∠B+∠C=∠BEC.
(2)如果點E運動到圖②所示的位置,其他條件不變,∠B,∠C,∠BEC又有什么關系?并證明你的結論;
(3)如圖③,AB∥DC,∠C=120°,∠AEC=80°,則∠A= .(寫出結論,不用寫計算過程)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的一元二次方程(k1)x2+2x-2=0有不相等實數(shù)根,則k的取值范圍是( )
A.k> B.k≥ C.k>且k≠1 D.k≥且k≠1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知, 是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.
(1) 求一次函數(shù)、反比例函數(shù)的關系式;
(2) 求△AOB的面積.
(3) 當自變量x滿足什么條件時,y1>y2 .(直接寫出答案)
(4)將反比例函數(shù)的圖象向右平移n(n>0)個單位,得到的新圖象經(jīng)過點(3,-4),求對應的函數(shù)關系式y(tǒng)3.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若五個整數(shù)由小到大排列后,中位數(shù)為4,唯一的眾數(shù)為2,則這組數(shù)據(jù)之和的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(11分)如圖,在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD,CD.
(1)求點C,D的坐標;
(2)若在y軸上存在點 M,連接MA,MB,使S△MAB=S平行四邊形ABDC,求出點M的坐標.
(3)若點P在直線BD上運動,連接PC,PO.
①若P在線段BD之間時(不與B,D重合),求S△CDP+S△BOP的取值范圍;
②若P在直線BD上運動,請直接寫出∠CPO、∠DCP、∠BOP的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題正確的是
A. 平行四邊形的對角線互相垂直平分 B. 矩形的對角線互相垂直平分
C. 菱形的對角線互相平分且相等 D. 正方形的對角線互相垂直平分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com