【題目】已知關(guān)于x、y的方程組,其中﹣3≤a≤1,給出下列說(shuō)法:①當(dāng)a=1時(shí),方程組的解也是方程x+y=2﹣a的解;②當(dāng)a=﹣2時(shí),x、y的值互為相反數(shù);③若x≤1,則1≤y≤4;④是方程組的解.其中說(shuō)法錯(cuò)誤的是( )
A. ①②③④ B. ①②③ C. ②④ D. ②③
【答案】A
【解析】
根據(jù)題目中的方程組可以判斷各個(gè)小題的結(jié)論是否成立,從而可以解答本題.
當(dāng)a=1時(shí),,解得,∴x+y=0≠2﹣1,故①錯(cuò)誤,
當(dāng)a=﹣2時(shí),,解得,,則x+y=6,此時(shí)x與y不是互為相反數(shù),故②錯(cuò)誤,
∵,解得,,
∵x≤1,則≤1,得a≥0,
∴0≤a≤1,則1≤≤,即1≤y≤,故③錯(cuò)誤,
∵,解得,當(dāng)x==4時(shí),得a=,y=,故④錯(cuò)誤,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì), 定義一種新運(yùn)算,規(guī)定 (其中, 均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例: .
已知, .
(1)求, 的值;
(2)若關(guān)于m的不等式組恰好有3個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)對(duì)一種新售的手機(jī)進(jìn)行市場(chǎng)問(wèn)卷調(diào)查,其中一個(gè)項(xiàng)目是讓每個(gè)人按A(不喜歡)、B(一般)、C(不比較喜歡)、D(非常喜歡)四個(gè)等級(jí)對(duì)該手機(jī)進(jìn)行評(píng)價(jià),圖①和圖②是該商場(chǎng)采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題:
(1)本次調(diào)查的人數(shù)為多少人?A等級(jí)的人數(shù)是多少?請(qǐng)?jiān)趫D中補(bǔ)全條形統(tǒng)計(jì)圖.
(2)圖①中,a等于多少?D等級(jí)所占的圓心角為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3, ),點(diǎn)C的坐標(biāo)為(,0),點(diǎn)P為斜邊OB上的一個(gè)動(dòng)點(diǎn),則PA+PC的最小值為( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在某一次實(shí)驗(yàn)中,測(cè)得兩個(gè)變量之間的關(guān)系如下表所示:
x | 1 | 2 | 3 | 4 | 12 | |
y | 12.03 | 5.98 | 3.03 | 1.99 | 1.00 |
請(qǐng)你根據(jù)表格回答下列問(wèn)題:
①這兩個(gè)變量之間可能是怎樣的函數(shù)關(guān)系?你是怎樣作出判斷的?請(qǐng)你簡(jiǎn)要說(shuō)明理由;
②請(qǐng)你寫(xiě)出這個(gè)函數(shù)的解析式;
③表格中空缺的數(shù)值可能是多少?請(qǐng)你給出合理的數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(南陽(yáng)唐河縣期中)如圖,在ABCD中,DE平分∠ADC交AB于G,交CB的延長(zhǎng)線(xiàn)于E,BF平分∠ABC交AD的延長(zhǎng)線(xiàn)于F.
(1)若AD=5,AB=8,求GB的長(zhǎng);
(2)求證:∠E=∠F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(徐州中考)如圖,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等邊三角形,E是AC的中點(diǎn),連接BE并延長(zhǎng)交DC于點(diǎn)F,求證:
(1)△ABE≌△CFE;
(2)四邊形ABFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=10,∠BAD的平分線(xiàn)交BC于點(diǎn)E,交DC的延長(zhǎng)線(xiàn)于點(diǎn)F,BG⊥AE,垂足為G,AG=2.5,則△CEF的周長(zhǎng)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的推理.
如圖,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,試說(shuō)明:AB∥CD.
完成推理過(guò)程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com