【題目】如圖,拋物線y=x2-2x-3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其對稱軸與拋物線相交于點(diǎn)M,與x軸相交于點(diǎn)N,點(diǎn)P是線段MN上的一個(gè)動點(diǎn),連接CP,過點(diǎn)P作PE⊥CP交x軸于點(diǎn)E.
(1)求拋物線的頂點(diǎn)M的坐標(biāo);
(2)當(dāng)點(diǎn)E與原點(diǎn)O的重合時(shí),求點(diǎn)P的坐標(biāo);
(3)求動點(diǎn)E到拋物線對稱軸的最大距離是多少?
【答案】(1)(1,-4).(2)當(dāng)點(diǎn)E與原點(diǎn)O的重合時(shí),點(diǎn)P的坐標(biāo)為(1,)或(1,).(3)點(diǎn)E到拋物線對稱軸的最大距離是4.
【解析】
(1)利用配方法將拋物線的解析式由一般式變形為頂點(diǎn)式,進(jìn)而即可得出頂點(diǎn)M的坐標(biāo);
(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),過點(diǎn)C作CF⊥直線MN,垂足為點(diǎn)F,易證△PON∽△CPF,利用相似三角形的性質(zhì)可得出關(guān)于PN長度的一元二次方程,解之即可得出PN的長,進(jìn)而可得出點(diǎn)P的坐標(biāo);
(3)過點(diǎn)C作CF⊥直線MN,垂足為點(diǎn)F,設(shè)PN=m,分0<m<3,m=0或m=3,3<m≤4三種情況考慮:①當(dāng)0<m<3時(shí),由(2)可知:△PEN∽△CPF,利用相似三角形的性質(zhì)可得出EN關(guān)于m的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)即可解決最值問題;②當(dāng)m=0或3時(shí),點(diǎn)E和點(diǎn)N重合,此時(shí)EN=0;③當(dāng)3<m≤4時(shí),易證△PCF∽△EPN,利用相似三角形的性質(zhì)可得出EN關(guān)于m的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)即可解決最值問題.綜上,取EN的最大值即可得出結(jié)論.
解:(1)∵y=x2-2x-3=(x-1)2-4,
∴拋物線的頂點(diǎn)M的坐標(biāo)為(1,-4).
(2)當(dāng)x=0時(shí),y=x2-2x-3=-3,
∴點(diǎn)C的坐標(biāo)為(0,-3).
過點(diǎn)C作CF⊥直線MN,垂足為點(diǎn)F,如圖1所示.
∵∠PON+∠OPN=90°,∠OPN+∠CPF=180°-∠CPO=90°,
∴∠PON=∠CPF.
又∵∠PNO=∠CFP=90°,
∴△PON∽△CPF,
∴=,即=,
∴PN=,
∴當(dāng)點(diǎn)E與原點(diǎn)O的重合時(shí),點(diǎn)P的坐標(biāo)為(1,)或(1,).
(3)過點(diǎn)C作CF⊥直線MN,垂足為點(diǎn)F,設(shè)PN=m,分三種情況考慮,如圖2所示.
①當(dāng)0<m<3時(shí),由(2)可知:△PEN∽△CPF,
∴=,即=m,
∴EN=-m2+3m=-(m-)2+.
∵-1<0,
∴當(dāng)m=時(shí),EN取得最大值,最大值為;
②當(dāng)m=0或3時(shí),點(diǎn)E和點(diǎn)N重合,此時(shí)EN=0;
③當(dāng)3<m≤4時(shí),∵∠PCF+∠CPF=90°,∠CPF+∠EPN=90°,
∴∠PCF=∠EPN.
又∵∠CFP=∠PNE=90°,
∴△PCF∽△EPN,
∴=,即=,
∴EN=m2-3m.
∵1>0,
∴當(dāng)3<m≤4時(shí),EN的值隨m值的增大而增大,
∴當(dāng)m=4時(shí),EN取得最大值,最大值為4.
綜上所述:點(diǎn)E到拋物線對稱軸的最大距離是4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C分別在坐標(biāo)軸上,B(4,2),過點(diǎn)D(0,3)和E(6,0)的直線分別與AB,BC交于點(diǎn)M,N.
(1)直接寫出直線DE的解析式_________;
(2)若反比例函數(shù)y=(x>0)的圖象與直線MN有且只有一個(gè)公共點(diǎn),求m的值.
(3)在分別過M,B的雙曲線y=(x>0)上是否分別存在點(diǎn)F,G使得B,M,F,G構(gòu)成平行四邊形,若存在則求出F點(diǎn)坐標(biāo), 若不存在則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤做游戲(每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD是平行四邊形,點(diǎn)O是對角線AC、BD的交點(diǎn),EF過點(diǎn)O且與AB、CD分別相交于點(diǎn)E、F,連接EC、AF.
(1)求證:DF=EB;(2)AF與圖中哪條線段平行?請指出,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,作Rt△ABC,邊BC在x軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長交y軸于點(diǎn)E,若△BCE的面積為4,則k=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠ACB=90°,AC=12,BC=5,P 是邊 AB 上的動點(diǎn)(不與點(diǎn) B 重合),將△BCP 沿 CP 所在的直線翻折,得到△B'CP,連接 B'A,B'A 長度的最小值是 m,B'A 長度的最大值是 n,則 m+n 的值等于 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果基地為了選出適應(yīng)市場需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個(gè)品種的小西紅柿秧苗各 300 株分別種植在甲、乙兩個(gè)大棚. 對于市場最為關(guān)注的產(chǎn)量和產(chǎn)量的穩(wěn)定性,進(jìn)行了抽樣調(diào)查,從甲、乙兩個(gè)大棚各收集了 24 株秧苗上的小西紅柿的個(gè)數(shù),并對數(shù)據(jù)進(jìn)行整理、描述和分析。
下面給出了部分信息:(說明:45 個(gè)以下為產(chǎn)量不合格,45 個(gè)及以上為產(chǎn)量合格,其中 45~65 個(gè)為產(chǎn)量良好,65~85 個(gè)為產(chǎn)量優(yōu)秀)
a.補(bǔ)全下面乙組數(shù)據(jù)的頻數(shù)分布直方圖(數(shù)據(jù)分成 6 組: 25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85):
b.乙組數(shù)據(jù)在產(chǎn)量良好(45≤x<65)這兩組的具體數(shù)據(jù)為: 46 46 47 47 48 48 55 57 57 57 58 61
c.數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 52.25 | 51 | 58 | 238 |
乙 | 52.25 | 57 | 210 |
(1)補(bǔ)全乙的頻數(shù)分布直方圖.
(2)寫出表中的值.
(3)根據(jù)樣本情況,估計(jì)乙大棚產(chǎn)量良好及以上的秧苗數(shù)為 株.
(4)根據(jù)抽樣調(diào)查情況,可以推斷出 大棚的小西紅柿秧苗品種更適應(yīng)市場需求,寫出理由.(至少從兩個(gè)不同的角度說明推斷的合理性).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y2>y1時(shí),求x的取值范圍;
(3)求點(diǎn)B到直線OM的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com