【題目】已知===3(b+d+f≠0),且k=.
(1)求k的值;
(2)若x1,x2是方程x2﹣3x+k﹣2=0的兩根,求x12+x22的值.
【答案】(1)3;(2)7
【解析】
(1)根據(jù)等式的性質(zhì)可得:a=3b,c=3d,e=3f,代入k=可得結(jié)論;
(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=3,x1x2=k﹣2,然后變形x12+x22=(x1+x2)2﹣2x1x2,再把x1+x2=3,x1x2=k﹣2整體代入計算即可.
解:(1)∵===3(b+d+f≠0),
∴a=3b,c=3d,e=3f
∴k===3;
(2)∵x1,x2是方程x2﹣3x+k﹣2=0的兩根,
∴x1+x2=3,x1x2=k﹣2,
∴x12+x22=(x1+x2)2﹣2x1x2=32﹣2(k﹣2)=9﹣2k+4=13﹣2k
∵k=3
∴原式=13﹣6=7.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化肥廠2019年生產(chǎn)氮肥4000噸,現(xiàn)準(zhǔn)備通過改進技術(shù)提升生產(chǎn)效率,計劃到2021年生產(chǎn)氮肥4840噸.現(xiàn)技術(shù)攻關(guān)小組按要求給出甲、乙兩種技術(shù)改進方案,其中運用甲方案能使每年產(chǎn)量增長的百分率相同,運用乙方案能使每年增長的產(chǎn)量相同.問運用哪一種方案能使2020年氮肥的產(chǎn)量更高?高多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AC=3,AB=4,動點P從點A出發(fā),沿AB方向以每秒2個單位長度的速度向終點B運動,點Q為線段AP的中點,過點P向上作PM⊥AB,且PM=3AQ,以PQ、PM為邊作矩形PQNM.設(shè)點P的運動時間為t秒.
(1)線段MP的長為 (用含t的代數(shù)式表示).
(2)當(dāng)線段MN與邊BC有公共點時,求t的取值范圍.
(3)當(dāng)點N在△ABC內(nèi)部時,設(shè)矩形PQNM與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關(guān)系式.
(4)當(dāng)點M到△ABC任意兩邊所在直線距離相等時,直接寫出此時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為原點,⊙O的半徑為1,點A的坐標(biāo)為(2,0),動點B在⊙O上,以AB為邊作等邊△ABC(順時針),則線段OC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2在第一象限內(nèi)經(jīng)過的整數(shù)點(橫坐標(biāo),縱坐標(biāo)都為整數(shù)的點)依次為A1,A2,A3,…An,…,將拋物線y=x2沿直線L:y=x向上平移,得一系列拋物線,且滿足下列條件:
①拋物線的頂點M1,M2,M3,…Mn,…都在直線L:y=x上;
②拋物線依次經(jīng)過點A1,A2,A3…An,….
則M2016頂點的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某無人機興趣小組在操場上開展活動(如圖),此時無人機在離地面30米的D處,無人機測得操控者A的俯角為37°,測得點C處的俯角為45°.又經(jīng)過人工測量操控者A和教學(xué)樓BC距離為57米,求教學(xué)樓BC的高度.(注:點A,B,C,D都在同一平面上.參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的圓O交BC于點D,交AC于點E,過點D作DF⊥AC于點F,交AB的延長線于點G.
(1)求證:DF是⊙O的切線;
(2)已知BD=,CF=2,求DF和BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨機抽取某小吃店一周的營業(yè)額(單位: 元)如下表:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | 合計 |
(1)分析數(shù)據(jù),填空:這組數(shù)據(jù)的平均數(shù)是 元,中位數(shù)是 元,眾數(shù)是 元.
(2)估計一個月(按天計算)的營業(yè)額,星期一到星期五營業(yè)額相差不大,用這天的平均數(shù)估算合適么?簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com