【題目】如圖,在正方形ABCD中,P為對(duì)角線(xiàn)BD上一點(diǎn),MN為正方形GHMN的一邊,若正方形AEOF的面積為18,則三角形PMN的面積是______

【答案】8

【解析】

根據(jù)正方形AEOF的面積為18得到正方形AEOF的邊長(zhǎng),因?yàn)?/span>DB是對(duì)角線(xiàn),能證得DNGDFO是等腰直角三角形,從而得出正方形ABCD的邊長(zhǎng),結(jié)合四邊形GNMH是正方形,能得出DG=GH=HB,即可得到PNM的面積.

解:∵正方形AEOF的面積為18,

AE=EO=OF=AF=,

DB是正方形的ABCD的對(duì)角線(xiàn),

∴∠CDB=FDB =45°

∴△DNGDFO是等腰直角三角形,

AD=,DG=GN,

同理可得:MH=HB

DG=GH=HB,

AD=,

BD=

GH=BD=4,

∴△PNM的面積:MN×GN×=4×4×=8

故答案為:8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)請(qǐng)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo).

(2)請(qǐng)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2

(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留根號(hào)和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線(xiàn)的對(duì)稱(chēng)軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)MN同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)MN運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)絡(luò)中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)絡(luò)的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;

3)點(diǎn)B關(guān)于x軸的對(duì)稱(chēng)點(diǎn)B2的坐標(biāo)是   ;

4)△ABC的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰RtABC,CAB=90°,AB=AC.

(1)求C點(diǎn)坐標(biāo);

(2)如圖過(guò)C點(diǎn)作CDX軸于D,連接AD,求ADC的度數(shù);

(3)如圖在(1)中,點(diǎn)A在Y軸上運(yùn)動(dòng),以O(shè)A為直角邊作等腰RtOAE,連接EC,交Y軸于F,試問(wèn)A點(diǎn)在運(yùn)動(dòng)過(guò)程中SAOB:SAEF的值是否會(huì)發(fā)生變化?如果沒(méi)有變化,請(qǐng)直接寫(xiě)出它們的比值   (不需要解答過(guò)程或說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD的對(duì)角線(xiàn)AC將其分割成兩個(gè)三角形:

1)如圖1.若∠BAC=DACABAD,求證:ABADCBCD

2)如圖2.若∠ACD+BAC=180°,∠B=D,求證:BC=AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,四邊形中,,中點(diǎn),平分.連接

(1)是否平分?請(qǐng)證明你的結(jié)論;

(2)線(xiàn)段有怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分,且,若點(diǎn)分別在上,且為等邊三角形,則滿(mǎn)足上述條件的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)MN∥PQ,直線(xiàn)AB分別與MN,PQ相交于點(diǎn)A,B.小宇同學(xué)利用尺規(guī)按以下步驟作圖:以點(diǎn)A為圓心,以任意長(zhǎng)為半徑作弧交AN于點(diǎn)C,交AB于點(diǎn)D;②分別以C,D為圓心,以大于CD長(zhǎng)為半徑作弧,兩弧在∠NAB內(nèi)交于點(diǎn)E;③作射線(xiàn)AEPQ于點(diǎn)F.若AB=2,∠ABP=60°,則線(xiàn)段AF的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案