【題目】如圖,長方形紙片ABCD,AB=a,BC=b,且b<a<2b,則∠ADC的平分線DE折疊紙片,點A落在CD邊上的點F處,再沿∠BEF的平分線EG折疊紙片,點B落在EF邊上的點H處,則四邊形CGHF的周長是( )

A.2a
B.2b
C.2(a﹣b)
D.a+b

【答案】B
【解析】解:由折疊得:DF=AD=b,BE=EH,∴FC=DC﹣DF=AB﹣DF=a﹣b,
∵四邊形ABCD是矩形,∴∠ADC=∠A=90°,
∵DE平分∠ADC,∴∠ADE=∠EDC=45°,
∵DC∥AB,∴∠EDC=∠AED=45°,
由折疊得:∠AED=∠DEF=45°,
∴∠AEF=90°,∴∠ADC=∠A=∠AEF=90°,∴四邊形DAEF是矩形,
同理四邊形CFEB是矩形,四邊形CFHG是矩形,
∴BE=FC=a﹣b,AD=EF=b,∴EH=BE=a﹣b,
∴FH=EF﹣EH=b﹣(a﹣b)=2b﹣a,
∴四邊形CGHF的周長是:2FC+2FH=2(a﹣b)+2(2b﹣a)=2b;
故選B.

【考點精析】掌握翻折變換(折疊問題)是解答本題的根本,需要知道折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形 )靠墻擺放,高 ,寬 ,小強身高 ,下半身 ,洗漱時下半身與地面成 ),身體前傾成 ),腳與洗漱臺距離 (點 , , 在同一直線上).

(1)此時小強頭部 點與地面 相距多少?
(2)小強希望他的頭部 恰好在洗漱盆 的中點 的正上方,他應(yīng)向前或后退多少?
, ,結(jié)果精確到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=12,BC=13,△ABD、△ACE、△BCF都是等邊三角形,則四邊形AEFD的面積S=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC中,點D、E、F、分別為邊AB,AC,BC的中點,M為直線BC動點,△DMN為等邊三角形

(1)如圖1,當點M在點B左側(cè)時,請你判斷EN與MF有怎樣的數(shù)量關(guān)系?
(2)如圖2,當點M在BC上時,其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請利用圖2證明;若不成立請說明理由;
(3)若點M在點C右側(cè)時,請你在圖3中畫出相應(yīng)的圖形,并判斷(1)的結(jié)論是否仍然成立?若成立,請直接寫出結(jié)論,若不成立請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至B處時,測得該島位于正北方向20(1+ )海里的C處,為了防止某國海巡警干擾,就請求我A處的漁監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB⊥BD, = ,將ABCD放置在平面直角坐標系中,且AD⊥x軸,點D的橫坐標為1,點C的縱坐標為3,恰有一條雙曲線 (k>0)同時經(jīng)過B、D兩點,則點B的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在密碼學中,直接可以看到內(nèi)容為明碼,對明碼進行某種處理后得到的內(nèi)容為密碼.有一種密碼,將英文的26個字母a、b、c,…,z依次對應(yīng)1、2、3,…,26這26個自然數(shù)(見表格),當明碼對應(yīng)的序號x為奇數(shù)時,密碼對應(yīng)的序號 ;當明碼對應(yīng)的序號x為偶數(shù)時,密碼對應(yīng)的序號

字母

a

b

c

d

e

f

g

h

i

j

k

l

m

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

字母

n

o

p

q

r

s

t

u

v

w

x

y

z

序號

14

15

16

17

18

19

20

21

22

23

24

25

26

按上述規(guī)定,將明碼“bird”譯成密碼是( )
A.bird
B.nove
C.sdri
D.nevo

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一堂關(guān)于“折紙問題”的數(shù)學綜合實踐探究課中,小明同學將一張矩形ABCD紙片,按如圖進行折疊,分別在BC、AD兩邊上取兩點E,F(xiàn),使CE=AF,分別以DE,BF為對稱軸將△CDE與△ABF翻折得到△C′DE與△A′BF,且邊C′E與A′B交于點G,邊A′F與C′D交于一點H.已知tan∠EBG= ,A′G=6,C′G=1,則矩形紙片ABCD的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓的直徑,點D是 的中點,且AB=4,∠BAC=50°,則AD的長度為cm(結(jié)果保留π).

查看答案和解析>>

同步練習冊答案