【題目】中華人民共和國第二屆青年運動會(簡稱二青會)將于2019年8月在山西舉行,太原市作為主賽區(qū),將承擔多項賽事,現(xiàn)正從某高校的甲、乙兩班分別招募10人作為頒獎禮儀志愿者,同學(xué)們踴躍報名,甲、乙兩班各報了20人,現(xiàn)已對他們進行了基本素質(zhì)測評,滿分10分.各班按測評成績從高分到低分順序各錄用10人,對這次基本素質(zhì)測評中甲、乙兩班學(xué)生的成績繪制了如圖所示的統(tǒng)計圖.
請解答下列問題:
(1)甲班的小華和乙班的小麗基本素質(zhì)測評成績都為7分,請你分別判斷小華,小麗能否被錄用(只寫判斷結(jié)果,不必寫理由).
(2)請你對甲、乙兩班各被錄用的10名志愿者的成績作出評價(從“眾數(shù)”,“中位數(shù)”,或“平均數(shù)”中的一個方面評價即可).
(3)甲、乙兩班被錄用的每一位志愿者都將通過抽取卡片的方式?jīng)Q定去以下四個場館中的兩個場館進行頒獎禮儀服務(wù),四個場館分別為:太原學(xué)院足球場,太原市沙灘排球場,山西省射擊射箭訓(xùn)練基地,太原水上運動中心,這四個場館分別用字母A,B,C,D的四張卡片(除字母外,其余都相同)背面朝上,洗勻放好.志愿者小玲從中隨機抽取一張(不放回),再從中隨機抽取一張,請你用列表或畫樹狀圖的方法求小玲抽到的兩張卡片恰好是“A”和“B”的概率.
【答案】(1)小華:不能被錄用,小麗:能被錄用;(2)見解析;(3).
【解析】
(1)根據(jù)甲班超過7分的人數(shù),乙班超過6分的人數(shù)都正好為10人進行說明即可;
(2)求出甲、乙兩班的眾數(shù),從眾數(shù)角度進行說明;也可以求出中位數(shù),從中位數(shù)角度進行說明;還可以求出兩班的平均數(shù),從平均數(shù)角度進行說明;(只要用其中一個進行說明即可);
(3)畫樹狀圖得到所有等可能的情況數(shù),然后找出符合條件的情況數(shù),利用概率公式進行計算即可.
(1)甲班超過7分的人數(shù)有4+3+3=10人,因此從高到低錄取,小華不能被錄取;
乙班超過7分的人數(shù)有3+1+4=8人,超過6分的人數(shù)有2+3+1+4=10人,因此從高到低錄取,小麗能被錄用;
(2)從眾數(shù)來看:甲、乙兩班各被錄用的10名志愿者成績的眾數(shù)分別為8分,10分,說明甲班被錄用的10 名志愿者中8分最多,乙班被錄用的10名志愿者中10分最多;
從中位數(shù)來看:甲、乙兩班各被錄用的10名志愿者成績的中位數(shù)分別為9分,8.5分,說明甲班被錄用的10名志愿者成績的中位數(shù)大于乙班被錄用的10名志愿者成績的中位數(shù);
從平均數(shù)來看:甲、乙兩班各被錄用的10名志愿者成績的平均數(shù)分別為=8.9,=8.7,說明甲班被錄用的10名志愿者成績的平均數(shù)大于乙班被錄用的10名志愿者成績的平均數(shù);
(從“眾數(shù)”,“中位數(shù)”或“平均數(shù)”中的一方面即可);
(3)畫樹狀圖如下:
由樹狀圖可知一共有12種可能出現(xiàn)的結(jié)果,且每種結(jié)果出現(xiàn)的可能性相同,其中抽到“A”和“B”的結(jié)果有2種.∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某化工材料經(jīng)銷商購進一種化工材料若干千克,成本為每千克30元,物價部門規(guī)定其銷售單價不低于成本價且不高于成本價的2倍,經(jīng)試銷發(fā)現(xiàn),日銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若在銷售過程中每天還要支付其他費用450元,當銷售單價為多少時,該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1(1,)在直線l1:y=x上,過點A1作A1B1⊥l1交直線l2:y=x于點B1,A1B1為邊在△OA1B1外側(cè)作等邊三角形A1B1C1,再過點C1作A2B2⊥l1,分別交直線l1和l2于A2,B2兩點,以A2B2為邊在△OA2B2外側(cè)作等邊三角形A2B2C2,…按此規(guī)律進行下去,則第2019個等邊三角形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生參加戶外活動的情況,某中學(xué)對學(xué)生每天參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖,根據(jù)圖示,請回答下列問題:
(I).被抽查的學(xué)生有_____人,抽查的學(xué)生中每天戶外活動時間是1.5小時的有_____人;
(II).求被抽查的學(xué)生的每天戶外活動時間的眾數(shù)、中位數(shù)和平均數(shù);
(III).該校共有1200名學(xué)生,請估計該校每天戶外活動時間超過1小時的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,矩形的頂點坐標為,交于點.
(1)如圖(1),雙曲線過點,直接寫出點的坐標和雙曲線的解析式;
(2)如圖(2),雙曲線與分別交于點,點關(guān)于的對稱點在軸上.求證,并求點的坐標;
(3)如圖(3),將矩形向右平移個單位長度,使過點的雙曲線與交于點.當為等腰三角形時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線經(jīng)過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設(shè)點D的橫坐標為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點M是軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)(a為常數(shù)).
(1)請寫出該二次函數(shù)圖象的三條性質(zhì);
(2)在同一直角坐標系中,若該二次函數(shù)的圖象在的部分與一次函數(shù)的圖象有兩個交點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,將線段繞點順時針旋轉(zhuǎn)90°得到線段,反比例函數(shù)的圖象經(jīng)過點.
(1)求直線和反比例函數(shù)的解析式;
(2)已知點是反比例函數(shù)圖象上的一個動點,求點到直線距離最短時的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸,y軸分別交于A,B兩點,過A,B兩點的拋物線與x軸交于點.
(1)求拋物線的解析式;
(2)連接BC,若點E是線段AC上的一個動點(不與A,C重合),過點E作,交AB于點F,當的面積是時,求點E的坐標;
(3)在(2)的結(jié)論下,將繞點F旋轉(zhuǎn)得,試判斷點是否在拋物線上,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com