【題目】我市某化工材料經(jīng)銷商購進(jìn)一種化工材料若干千克,成本為每千克30元,物價部門規(guī)定其銷售單價不低于成本價且不高于成本價的2倍,經(jīng)試銷發(fā)現(xiàn),日銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖所示.

1)求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

2)若在銷售過程中每天還要支付其他費用450元,當(dāng)銷售單價為多少時,該公司日獲利最大?最大獲利是多少元?

【答案】1;(2)每千克60元,最大獲利為1950

【解析】

1)設(shè)一次函數(shù)關(guān)系式為,根據(jù)圖像中的兩點坐標(biāo)即可求解;

2)由獲利,再根據(jù)二次函數(shù)的性質(zhì)即可求解.

解:

1)設(shè)一次函數(shù)關(guān)系式為

由圖象可得,當(dāng)時,;時,

,解得

之間的關(guān)系式為

2)設(shè)該公司日獲利為元,由題意得

;

∴拋物線開口向下;

∵對稱軸

∴當(dāng)時,隨著的增大而增大;

,

時,有最大值;

即,銷售單價為每千克60元時,日獲利最大,最大獲利為1950元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為1,∠ABC120°,E、FP分別是AB、BCAC上的動點,則PE+PF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是對角線BD上的一點,過點CCFDB,且CF=DE,連接AE,BFEF

1)求證:△ADE≌△BCF;

2)若∠ABE+BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB2,OBC邊的中點,點E是正方形內(nèi)一動點,OE2,連接DE,將線段DE繞點D逆時針旋轉(zhuǎn)90°得DF,連接AECF.則線段OF長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在趣味運動會定點投籃項目中,我校七年級八個班的投籃成績單位:個分別為:24,2019,20,22,2320,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是  

A. 22個、20 B. 22個、21 C. 20個、21 D. 20個、22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,AB=BD,點B、C、D、G四個點在同一個圓⊙O上,連接BG 并延長交AD于點F,連接DG并延長交AB于點E,BDCG交于點H,連接FH,下列結(jié) 論:①AE=DF②FH∥AB;③△DGH∽△BGE;當(dāng)CG⊙O的直徑時,DF=AF.其中正確結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=C.

(1)求證:AE與⊙O相切于點A;

(2)若AEBC,BC=2,AC=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在已知的ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點MN;②作直線MNAB于點D,連接CD.若ADAC,∠A80°,則∠ACB的度數(shù)為(

A.65°B.70°C.75°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中(如圖),已知點Ax軸的正半軸上,且與原點的距離為3,拋物線yax24ax+3a0)經(jīng)過點A,其頂點為C,直線y1y軸交于點B,與拋物線交于點D(在其對稱軸右側(cè)),聯(lián)結(jié)BC、CD

1)求拋物線的表達(dá)式及點C的坐標(biāo);

2)點Py軸的負(fù)半軸上的一點,如果△PBC與△BCD相似,且相似比不為1,求點P的坐標(biāo);

3)將∠CBD繞著點B逆時針方向旋轉(zhuǎn),使射線BC經(jīng)過點A,另一邊與拋物線交于點E(點E在對稱軸的右側(cè)),求點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案