如圖,ABCD為正方形,A,E,F(xiàn),G在同一條直線上,并且AE=5厘米,EF=3厘米,那么FG=
 
厘米.
精英家教網(wǎng)
分析:利用ABCD為正方形,求證△AED∽△GEB,△AEB∽△FED,再利用相似三角形的對應(yīng)邊成比例和等量代換,將已知數(shù)值代入即可求解.
解答:精英家教網(wǎng)解:由ABCD為正方形,得AD∥BG,AB∥CD,
∴△AED∽△GEB,
EG
AE
=
BE
ED
,
由△AEB∽△FED得
AE
EF
=
BE
ED
,
AE
EF
=
BE
ED
=
EG
AE
=
EF+FG
AE
,
FG=
AE2
EF
-EF
=
52
3
-3=
16
3
(厘米).
點評:此題考查學(xué)生對相似三角形的判定與性質(zhì)和正方形性質(zhì)的理解和掌握.關(guān)鍵是證明三角形相似,利用其對應(yīng)邊成比例來求解的,此題難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,在正方ABCD中,E是AB邊上任一點,BG⊥CE,垂足為O,交AC于點F,交AD于點G.
(1)證明BE=AG;
(2)E位于什么位置時,∠AEF=∠CEB?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題學(xué)習(xí):
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點,則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點,則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(3)如圖3,梯形ABCD中,AD∥BC,對角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點.四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關(guān)系為:
S1=2S2
S1=2S2
;
(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點,H、F分別是邊形AD、BC上的點,且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市前洲中學(xué)九年級下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,四邊形ABCD的邊AB在X軸上,A與O重合,CD∥AB,D(0,),直線AE與CD交于E,DE=6。以BE為折痕,把點A翻恰好與點C重合;動點P從點D出發(fā)沿著D→C→B→O路徑勻速運動,速度為每秒4個單位;以P為圓心的⊙P半徑每秒增加個單位,當(dāng)點P在點D處時,⊙P半徑為;直線AE沿y軸正方向向上平移,速度為每秒個單位;直線AE、⊙P同時出發(fā),當(dāng)點P到終點O時兩者都停止,運動時間為t;

(1) 求點B的坐標(biāo);
(2)求當(dāng)直線AE與⊙P相切時t的值;
(3) 在整個運動過程中直線AE與⊙P相交的時間共有幾秒?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市九年級下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,四邊形ABCD的邊AB在X軸上,A與O重合,CD∥AB,D(0,),直線AE與CD交于E,DE=6。以BE為折痕,把點A翻恰好與點C重合;動點P從點D出發(fā)沿著D→C→B→O路徑勻速運動,速度為每秒4個單位;以P為圓心的⊙P半徑每秒增加個單位,當(dāng)點P在點D處時,⊙P半徑為;直線AE沿y軸正方向向上平移,速度為每秒個單位;直線AE、⊙P同時出發(fā),當(dāng)點P到終點O時兩者都停止,運動時間為t;

(1) 求點B的坐標(biāo);

(2)求當(dāng)直線AE與⊙P相切時t的值;

(3) 在整個運動過程中直線AE與⊙P相交的時間共有幾秒?(直接寫出答案)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:重慶市期末題 題型:證明題

如圖,AC為正方ABCD形的一條對角線,點E為DA邊延長線上的一點,連接BE,在BE上取一點F,使BF=BC,過點B作BK⊥BE于B,交AC于點K,連接CF,交AB于點H,交BK于點G。
(1)求證:BH=BG;
(2)求證:BE=BG+AE。

查看答案和解析>>

同步練習(xí)冊答案