【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動點M從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點N從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,設運動時間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;

(2)若△MBN與△ABC相似,求t的值;

(3)當t為何值時,四邊形ACNM的面積最?并求出最小值.

【答案】(1);(2)t=t=;(3)t=時,y的值最。=

【解析】(1)在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∠B=30°,AB=2AC=10,BC=

由題意知:BM=2t,CN=BN=,BM=BN,,解得:t==

(2)分兩種情況:①當△MBN∽△ABC時,則,即,解得:t=

②當△NBM∽△ABC時,則,即,解得:t=

綜上所述:當t=t=時,△MBN與△ABC相似.

(3)過M作MD⊥BC于點D,則MD∥AC,△BMD∽△BAC,,即,解得:MD=t.

設四邊形ACNM的面積為y,y==,根據(jù)二次函數(shù)的性質可知,當t=時,y的值最。藭r,=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

紅星中學根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地校參加社會實踐活動,設租用A型客車x輛,根據(jù)要求回答下列問題:

(1)用含x的式子填寫下表:

(2)若要保證租車費用不超過1900元,求x的最大值;

(3)在(2)的條件下,若七年級師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結BC.

(1)求該二次函數(shù)的解析式及點M的坐標;

(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內部(不包括△ABC的邊界),求m的取值范圍;

(3)點P是直線AC上的動點,若點P,點C,點M所構成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,AB>AD,分別以點A,C為圓心,以AD,CB長為半徑作弧,交AB,CD于點E,F(xiàn),連接AF,CE.求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD,AB=5,對角線BD=8,作AE⊥BC于點E,CF⊥AD于點F,連接EF,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解八年級學生的課外閱讀情況,我校語文組從八年級隨機抽取了若干名學生,對他們的讀書時間進行了調查并將收集的數(shù)據(jù)繪成了兩幅不完整的統(tǒng)計圖,請你依據(jù)圖中提供的信息,解答下列問題:(每組含最小值不含最大值)

(1)從八年級抽取了多少名學生?
(2)填空(直接把答案填到橫線上)
①“2-2.5小時”的部分對應的扇形圓心角為度;
②課外閱讀時間的中位數(shù)落在(填時間段)內.
(3)如果八年級共有800名學生,請估算八年級學生課外閱讀時間不少于1.5小時的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以點(﹣3,4)為圓心,4為半徑的圓(
A.與x軸相交,與y軸相切
B.與x軸相離,與y軸相交
C.與x軸相切,與y軸相交
D.與x軸相切,與y軸相離

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)據(jù)9.30,9.05,9.10,9.40,9.20,9.10的眾數(shù)是;中位數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過原點O,頂點為A(1,1),且與直線y=x﹣2交于B,C兩點.

(1)求拋物線的解析式及點C的坐標;

(2)求證:△ABC是直角三角形;

(3)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案