【題目】如圖1,已知直線(xiàn)y=a與拋物線(xiàn)交于A、B兩點(diǎn)(A在B的左側(cè)),交y軸于點(diǎn)C
(1)若AB=4,求a的值
(2)若拋物線(xiàn)上存在點(diǎn)D(不與A、B重合),使,求a的取值范圍
(3)如圖2,直線(xiàn)y=kx+2與拋物線(xiàn)交于點(diǎn)E、F,點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),延長(zhǎng)PE、PF分別交直線(xiàn)y=-2于M、N兩點(diǎn),MN交y軸于Q點(diǎn),求QM·QN的值。
圖1 圖2
【答案】(1);(2);(3)8
【解析】
(1)將兩個(gè)函數(shù)解析式聯(lián)立,解一元二次方程求得A、B的橫坐標(biāo),進(jìn)而表示出AB,即可解答;
(2)由(1)可得CD=AB=,設(shè)D ,過(guò)點(diǎn)D作DH⊥y軸于點(diǎn)H,利用勾股定理可知,進(jìn)而得到,得到,根據(jù)函數(shù)圖象可知,即可求得a的取值范圍;
(3)設(shè)E(),F(),P(),分別表示EP和FP的解析式,當(dāng)時(shí),求得,,聯(lián)立和y=kx+2,得到,利用一元二次方程根與系數(shù)的關(guān)系得到,代入即可解答.
(1)聯(lián)立,
∴,解得:
∴
∴
(2)由(1)知AB=,
∴CD=AB=
設(shè)D
過(guò)點(diǎn)D作DH⊥y軸于點(diǎn)H,則
∴
∴
又
∴
∴
又
∴
∴
(3)設(shè)E(),F(),P()
EP解析式為
將P,E代入可得:
當(dāng)時(shí),可求,
同理可求FP的解析式為
又聯(lián)立得:
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中,已知點(diǎn)A(-2,0)和點(diǎn)B(3,0),線(xiàn)段AB和線(xiàn)段AB外的一點(diǎn)P,給出如下定義:若45°≤∠APB≤90°時(shí),則稱(chēng)點(diǎn)P為線(xiàn)段AB的可視點(diǎn),且當(dāng)PA=PB時(shí),稱(chēng)點(diǎn)P為線(xiàn)段AB的正可視點(diǎn).
圖1 備用圖
(1) ①如圖1,在點(diǎn)P1(3,6),P2(-2,-5),P3(2,2)中,線(xiàn)段AB的可視點(diǎn)是 ;
②若點(diǎn)P在y軸正半軸上,寫(xiě)出一個(gè)滿(mǎn)足條件的點(diǎn)P的坐標(biāo):__________.
(2)在直線(xiàn)y=x+b上存在線(xiàn)段AB的可視點(diǎn),求b的取值范圍;
(3)在直線(xiàn)y=-x+m上存在線(xiàn)段AB的正可視點(diǎn),直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在菱形ABCD中,F為邊AB的中點(diǎn),DF與對(duì)角線(xiàn)AC交于點(diǎn)G,過(guò)G作GE⊥AD于點(diǎn)E,若AB=2,且∠1=∠2,則下列結(jié)論中一定成立的是_____(把所有正確結(jié)論的序號(hào)都填在橫線(xiàn)上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四邊形BFGC=﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種拉桿式旅行箱的示意圖如圖所示,箱體長(zhǎng)AB=50cm,拉桿最大伸長(zhǎng)距離BC=35cm,(點(diǎn)A、B、C在同一條直線(xiàn)上),在箱體的底端裝有一圓形滾輪⊙A,⊙A與水平地面切于點(diǎn)D,AE∥DN,某一時(shí)刻,點(diǎn)B距離水平面38cm,點(diǎn)C距離水平面59cm.
(1)求圓形滾輪的半徑AD的長(zhǎng);
(2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感覺(jué)較為舒服,已知某人的手自然下垂在點(diǎn)C處且拉桿達(dá)到最大延伸距離時(shí),點(diǎn)C距離水平地面73.5cm,求此時(shí)拉桿箱與水平面AE所成角∠CAE的大。ň_到1°,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)有一塊長(zhǎng)為30m,寬為24m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利川市南門(mén)大橋是上世紀(jì)90年代修建的一座石拱橋,其主橋孔的橫截面是一條拋物線(xiàn)的一部分,2019年在維修時(shí),施工隊(duì)測(cè)得主橋孔最高點(diǎn)到水平線(xiàn)的高度為.寬度為.如圖所示,現(xiàn)以點(diǎn)為原點(diǎn),所在直線(xiàn)為軸建立平面直角坐標(biāo)系.
(1)直接寫(xiě)出點(diǎn)及拋物線(xiàn)頂點(diǎn)的坐標(biāo);
(2)求出這條拋物線(xiàn)的函數(shù)解析式;
(3)施工隊(duì)計(jì)劃在主橋孔內(nèi)搭建矩形“腳手架”,使點(diǎn)在拋物線(xiàn)上,點(diǎn)在水平線(xiàn)上,為了籌備材料,需求出“腳手架”三根鋼管的長(zhǎng)度之和的最大值是多少?請(qǐng)你幫施工隊(duì)計(jì)算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作探究
如圖1,在Rt△ABC中,∠B=90°,AB=4,BC=2,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),連接DE.將△CDE繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn)
①當(dāng)α=0°時(shí),= ;②當(dāng)α=180°時(shí),= .
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明.
(3)問(wèn)題解決
△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至A、B、E三點(diǎn)在同一條直線(xiàn)上時(shí),求線(xiàn)段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=9,AD=3,點(diǎn)P是邊BC上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,點(diǎn)C重合),過(guò)點(diǎn)P作直線(xiàn)PQ∥BD,交CD邊于Q點(diǎn),再把△PQC沿著動(dòng)直線(xiàn)PQ對(duì)折,點(diǎn)C的對(duì)應(yīng)點(diǎn)是R點(diǎn),設(shè)CP的長(zhǎng)度為x,△PQR與矩形ABCD重疊部分的面積為y.
(1)求∠CQP的度數(shù);
(2)當(dāng)x取何值時(shí),點(diǎn)R落在矩形ABCD的AB邊上;
(3)①求y與x之間的函數(shù)關(guān)系式;
②當(dāng)x取何值時(shí),重疊部分的面積等于矩形面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張老師在講解復(fù)習(xí)《圓》的內(nèi)容時(shí),用投影儀屏幕展示出如下內(nèi)容:
如圖,內(nèi)接于,直徑的長(zhǎng)為2,過(guò)點(diǎn)的切線(xiàn)交的延長(zhǎng)線(xiàn)于點(diǎn).
張老師讓同學(xué)們添加條件后,編制一道題目,并按要求完成下列填空.
(1)在屏幕內(nèi)容中添加條件,則的長(zhǎng)為______.
(2)以下是小明、小聰?shù)膶?duì)話(huà):
小明:我加的條件是,就可以求出的長(zhǎng)
小聰:你這樣太簡(jiǎn)單了,我加的是,連結(jié),就可以證明與全等.
參考上面對(duì)話(huà),在屏幕內(nèi)容中添加條件,編制一道題目(此題目不解答,可以添線(xiàn)、添字母).______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com