如圖,邊長為4的等邊三角形AOB的頂點O在坐標原點,點A在x軸正半軸上,點B在第一象限.一動點P沿x軸以每秒1個單位長的速度向點A勻速運動,當點P到達點A時停止運動,設(shè)點P運動的時間是t秒.將線段BP的中點繞點P按順時針方向旋轉(zhuǎn)60°得點C,點C隨點P的運動而運動,連接CP、CA,過點P作PD⊥OB于點D.
(1)填空:PD的長為 (用含t的代數(shù)式表示);
(2)求點C的坐標(用含t的代數(shù)式表示);
(3)在點P從O向A運動的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請說明理由;
(4)填空:在點P從O向A運動的過程中,點C運動路線的長為
【解析】此題考核相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)
(1)∵△AOB是等邊三角形,
∴OB=OA=AB=4,∠BOA=∠OAB=∠ABO=60°.
∵PD⊥OB,∴∠PDO=90°,∴∠OPD=30°,∴OD=OP.∵OP=t,∴OD=t,在Rt△OPD中,由勾股定理,得PD=
(2)如圖(1)過C作CE⊥OA于E,∴∠PEC=90°,
∵OD=t,∴BD=4-t.
∵線段BP的中點繞點P按順時針方向旋轉(zhuǎn)60°得點C,
∴∠BPC=60°.∵∠OPD=30°,
∴∠BPD+∠CPE=90°.∴∠DBP=∠CPE
∴△PCE∽△BPD
∴,
∴,,
∴CE=,PE=,OE=,∴C(,).
(3)如圖(3)當∠PCA=90度時,作CF⊥PA,∴△PCF∽△ACF,∴,∴CF2=PF•AF,
∵PF=,AF=4-OF=2- CF=,
∴()2=()(2-),
求得t=2,這時P是OA的中點.
如圖(2)當∠CAP=90°時,C的橫坐標就是4,
∴2+=4∴t=
(4)設(shè)C(x,y),
∴x=2+,y=,∴y=x-,
∴C點的運動痕跡是一條線段.當t=0時,C1(2,0),當t=4時,C2(5,),∴由兩點間的距離公式得:C1C2=2.
科目:初中數(shù)學(xué) 來源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
|
|
p+pm |
m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com