【題目】如圖所示是10×8的網(wǎng)格,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)均為1,A、B兩點(diǎn)在小正方形的頂點(diǎn)上,使以A、B、C為頂點(diǎn)的三角形分別滿足以下要求:
(1)請(qǐng)?jiān)趫D中取一點(diǎn)C(點(diǎn)C必須在小正方形的頂點(diǎn)上),使△ABC為鈍角等腰三角形;
(2)通過(guò)計(jì)算,直接寫(xiě)出△ABC的周長(zhǎng).

【答案】
(1)解:如圖所示,△ABC為所求的三角形;


(2)解:由題意得:AB=BC= =2 ,

AC= =8

則△ABC周長(zhǎng)為4 +8


【解析】(1)如圖所示,使AB=BC,連接AC,得到三角形ABC;(2)在網(wǎng)格中,利用勾股定理分別求出AB,BC以及AC的長(zhǎng),即可確定出三角形ABC周長(zhǎng).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的判定和勾股定理的概念的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線x軸負(fù)半軸交于點(diǎn)A,頂點(diǎn)為B,且對(duì)稱軸與x軸交于點(diǎn)C。

  (1)求點(diǎn)B的坐標(biāo)(用含m的代數(shù)式表示);

  (2)DBD中點(diǎn),直線ADy軸于E,若點(diǎn)E的坐標(biāo)為(0,2),求拋物線的解析式;

  (3)(2)的條件下,點(diǎn)M在直線BO上,且使得AMC的周長(zhǎng)最小,P在拋物線上,Q在直線BC上,若以A、M、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB≠AD,對(duì)角線AC與BD相交于點(diǎn)O,OE⊥BD交AD于E,若△ABE的周長(zhǎng)為12cm,則平行四邊形ABCD的周長(zhǎng)是(
A.40cm
B.24cm
C.48cm
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠B=90°,AB=BC=3 ,CD=8,AD=10.
(1)求∠BCD的度數(shù).
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果ab23,且a+b10,那么a_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?

(3)根據(jù)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷(xiāo)售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列長(zhǎng)度的3條線段,能構(gòu)成三角形的是( )
A.1,2,3
B.2,3,4
C.6,6,12
D.5,6,12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=45°,ADBC于點(diǎn)D,以D為圓心DC為半徑作⊙DAD于點(diǎn)G,過(guò)點(diǎn)G作⊙D的切線交AB于點(diǎn)F,且F恰好為AB中點(diǎn).

(1)求tan∠ACD的值.

(2)連結(jié)CG并延長(zhǎng)交AB于點(diǎn)H,若AH=2,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某物流公司承接A、B兩種貨物運(yùn)輸業(yè)務(wù),已知5月份A貨物運(yùn)費(fèi)單價(jià)為50/噸,B貨物運(yùn)費(fèi)單價(jià)為30/噸,共收取運(yùn)費(fèi)9500元;6月份由于油價(jià)上漲,運(yùn)費(fèi)單價(jià)上漲為:A貨物70/噸,B貨物40/噸;該物流公司6月承接的A種貨物和B種數(shù)量與5月份相同,6月份共收取運(yùn)費(fèi)13000元.

1)該物流公司月運(yùn)輸兩種貨物各多少噸?

2)該物流公司預(yù)計(jì)7月份運(yùn)輸這兩種貨物330噸,且A貨物的數(shù)量不大于B貨物的2倍,在運(yùn)費(fèi)單價(jià)與6月份相同的情況下,該物流公司7月份最多將收到多少運(yùn)輸費(fèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案