將兩塊斜邊長(zhǎng)相等的等腰直角三角形按如圖A擺放,斜邊AB分別交CD、CE于M、N點(diǎn),
(1)如果把圖A中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖B,求證:△CMF≌△CMN:
(2)將△CED繞點(diǎn)C旋轉(zhuǎn):
①當(dāng)點(diǎn)M、N在AB上(不與A、B重合)時(shí),線段AM、MN、NB之間有一個(gè)不變的關(guān)系式,請(qǐng)你寫出這個(gè)關(guān)系式,并說(shuō)明理由;
②當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長(zhǎng)線上(如圖C)時(shí),①中的關(guān)系式是否仍然成立?請(qǐng)說(shuō)明理由.
(1)∵△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,
∴CF=CN,∠ACF=∠BCN,
∵∠DCE=45°,
∴∠ACM+∠BCN=45°,
∴∠ACM+∠ACF=45°,
即∠MCF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
CF=CN
∠MCF=∠MCN
CM=CM

∴△CMF≌△CMN(SAS);

(2)①∵△CMF≌△CMN,
∴FM=MN,
又∵∠CAF=∠B=45°,
∴∠FAM=∠CAF+∠BAC=45°+45°=90°,
∴AM2+AF2=FM2,
∴AM2+BN2=MN2;

②如圖,把△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,
則AF=BN,CF=CN,∠BCN=∠ACF,
∵∠MCF=∠ACB-∠MCB-∠ACF=90°-(45°-∠BCN)-∠ACF=45°+∠BCN-∠ACF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
CF=CN
∠MCF=∠MCN
CM=CM
,
∴△CMF≌△CMN(SAS),
∴FM=MN,
∵∠ABC=45°,
∴∠CAF=∠CBN=135°,
又∵∠BAC=45°,
∴∠FAM=∠CAF-∠BAC=135°-45°=90°,
∴AM2+AF2=FM2,
∴AM2+BN2=MN2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角坐標(biāo)平面內(nèi)的機(jī)器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行動(dòng)結(jié)果為:在原地順時(shí)針旋轉(zhuǎn)A后,再向正前方沿直線行走a個(gè)單位長(zhǎng)度.若機(jī)器人的位置在原點(diǎn),正前方為y軸的負(fù)半軸,則它完成一次指令[2,60°]后位置的坐標(biāo)為(  )
A.(-1,
3
B.(-1,-
3
C.(-
3
,-1)
D.(-
3
,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC和△A1B1C1關(guān)于點(diǎn)E成中心對(duì)稱,則點(diǎn)E坐標(biāo)是( 。
A.(-3,-1)B.(-3,-3)C.(-3,0)D.(-4,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ACB=90°,M為AB邊的中點(diǎn),將Rt△ABC繞點(diǎn)M旋轉(zhuǎn),使點(diǎn)A與點(diǎn)C重合得到△CED,連接MD.若∠B=25°,則∠BMD等于( 。
A.50°B.80°C.90°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,將直角△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△A′B′C的位置,已知AB=10,BC=6,M是A′B′的中點(diǎn),則AM=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB、CD是同心圓中半徑最大的圓的直徑,且AB⊥CD于點(diǎn)O,若AB=4,則圖中陰影部分的面積等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

把正方形ABCD繞著點(diǎn)A,按順時(shí)針?lè)较蛐D(zhuǎn)得到正方形AEFG,邊FG與BC交于點(diǎn)H(如圖).
(1)試問(wèn)線段HG與線段HB相等嗎?請(qǐng)先觀察猜想,然后再證明你的猜想.
(2)若正方形的邊長(zhǎng)為2cm,重疊部分(四邊形ABHG)的面積為
4
3
3
cm2,求旋轉(zhuǎn)的角度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中放置著一個(gè)小旗ABCD,其四個(gè)頂點(diǎn)的坐標(biāo)分別A(1,4),B(4,3),C(1,2),D(1,-1).
(1)畫出將小旗繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到的圖形A1B1C1D;
(2)畫出圖形A1B1C1D關(guān)于原點(diǎn)O成中心對(duì)稱的圖象A2B2C2D2
(3)點(diǎn)B2的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

任畫一個(gè)直角△ABC,其中∠B=90°,取△ABC外一點(diǎn)P為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)60°,作出旋轉(zhuǎn)后的三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案