【題目】不等式1﹣2x<6的負(fù)整數(shù)解是 .
【答案】﹣2,﹣1
【解析】解:1﹣2x<6,
移項(xiàng)得:﹣2x<6﹣1,
合并同類項(xiàng)得:﹣2x<5,
不等式的兩邊都除以﹣2得:x>﹣ ,
∴不等式的負(fù)整數(shù)解是﹣2,﹣1,
所以答案是:﹣2,﹣1.
【考點(diǎn)精析】本題主要考查了不等式的性質(zhì)和一元一次不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握1:不等式的兩邊同時(shí)加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變 .2:不等式的兩邊同時(shí)乘以(或除以)同一個(gè) 正數(shù) ,不等號(hào)的方向 不變 .3:不等式的兩邊同時(shí)乘以(或除以)同一個(gè) 負(fù)數(shù) ,的方向 改變;步驟:①去分母;②去括號(hào);③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1(特別要注意不等號(hào)方向改變的問(wèn)題)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)等腰三角形的兩邊長(zhǎng)分別為5厘米、9厘米,則這個(gè)三角形的周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為傳播奧運(yùn)知識(shí),小剛就本班學(xué)生對(duì)奧運(yùn)知識(shí)的了解程度進(jìn)行了一次調(diào)查統(tǒng)計(jì):A:熟悉,B:了解較多,C:一般了解.圖1和圖2是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題:
(1)求該班共有多少名學(xué)生;
(2)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,計(jì)算出“了解較多”部分所對(duì)應(yīng)的圓心角的度數(shù);
(4)如果全年級(jí)共1000名同學(xué),請(qǐng)你估算全年級(jí)對(duì)奧運(yùn)知識(shí)“了解較多”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(2,5)
B.(5,2)
C.(4, )
D.( ,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB和△DCE均為等腰三角形,點(diǎn)A,D,E在同一直線上,連接BE.
(1)如圖1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求證:AD=BE;
②求∠AEB的度數(shù).
(2)如圖2,若∠ACB=∠DCE=120°,CM為△DCE中DE邊上的高,BN為△ABE中AE邊上的高,試證明:AE=CM+BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把拋物線y=x2向左平移2個(gè)單位得到的拋物線是( 。
A.y=(x+2)2B.y=(x﹣2)2C.y=x2+2D.y=x2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P1、P2是反比例函數(shù)(k>0)在第一象限圖象上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點(diǎn)P1、P2為直角頂點(diǎn).
(1)求反比例函數(shù)的解析式.
(2)①求P2的坐標(biāo).
②根據(jù)圖象直接寫(xiě)出在第一象限內(nèi)當(dāng)x滿足什么條件時(shí),經(jīng)過(guò)點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com