【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,與DC的延長線相交于點(diǎn)H,則△DEF的面積是 .
【答案】
【解析】解:∵四邊形ABCD是平行四邊形, ∴AD=BC=4,AB∥CD,AB=CD=3,
∵E為BC中點(diǎn),
∴BE=CE=2,
∵∠B=60°,EF⊥AB,
∴∠FEB=30°,
∴BF=1,
由勾股定理得:EF= ,
∵AB∥CD,
∴△BFE∽△CHE,
∴ = = = =1,
∴EF=EH= ,CH=BF=1,
∵S△DHF= DHFH= ×(1+3)×2 =4 ,
∴S△DEF= S△DHF=2 ,
故答案為:2 .
根據(jù)平行四邊形的性質(zhì)得到AB=CD=3,AD=BC=4,求出BE、BF、EF,根據(jù)相似得出CH=1,EH= ,根據(jù)三角形的面積公式求△DFH的面積,即可求出答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對知識拓展,體育特長、藝術(shù)特長和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整),請根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計(jì)圖中m的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在被調(diào)查的學(xué)生中,隨機(jī)抽一人,抽到選“體育特長類”或“藝術(shù)特長類”的學(xué)生的概率是多少?
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動(dòng)類”課程每班安排20人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,D是AB上的點(diǎn),過點(diǎn)D作交BC于點(diǎn)F,交AC的延長線于點(diǎn)E,連接CD,,則下列結(jié)論正確的有______ 將所有正確答案的序號都填在橫線上
;;是等邊三角形;若,則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在數(shù)軸上A點(diǎn)表示數(shù),B點(diǎn)表示數(shù),且、滿足,
(1)點(diǎn)A表示的數(shù)為_______;點(diǎn)B表示的數(shù)為__________;
(2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請?jiān)跀?shù)軸上找一點(diǎn)C,使AC=3BC,則C點(diǎn)表示的數(shù)__________;
(3)若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),請分別表示出甲、乙兩小球到原點(diǎn)的距離(用含t的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),……按此規(guī)律,則第50個(gè)圖形中面積為1的正方形的個(gè)數(shù)為( 。
A. 1322 B. 1323 C. 1324 D. 1325
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,線段AB的中點(diǎn)表示的數(shù)為.如:如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,則A、兩點(diǎn)間的距離AB=|﹣2﹣8|=10,線段AB的中點(diǎn)C表示的數(shù)為=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ,點(diǎn)Q表示的數(shù)為 .
(2)求當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);
(3)求當(dāng)t為何值時(shí),PQ=AB;
(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)O在邊AB上,⊙O過點(diǎn)B且分別與邊AB、BC相交于點(diǎn)D、E、F是AC上的點(diǎn),判斷下列說法錯(cuò)誤的是( )
A.若EF⊥AC,則EF是⊙O的切線
B.若EF是⊙O的切線,則EF⊥AC
C.若BE=EC,則AC是⊙O的切線
D.若BE= EC,則AC是⊙O的切線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察思考:如圖,線段AB上有兩個(gè)點(diǎn)C、D,請分別寫出以點(diǎn)A、B、C、D為端點(diǎn)的線段,并計(jì)算圖中共有多少條線段;
(2)模型構(gòu)建:如果線段上有m個(gè)點(diǎn)(包括線段的兩個(gè)端點(diǎn)),則該線段上共有多少條線段?請說明你結(jié)論的正確性;
(3)拓展應(yīng)用:某班45名同學(xué)在畢業(yè)后的一次聚會(huì)中,若每兩人握1次手問好,那么共握多少次手?
請將這個(gè)問題轉(zhuǎn)化為上述模型,并直接應(yīng)用上述模型的結(jié)論解決問題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com