【題目】如圖,某武警部隊(duì)在一次地震搶險(xiǎn)救災(zāi)行動(dòng)中,探險(xiǎn)隊(duì)員在相距4米的水平地面A,B兩處均探測(cè)出建筑物下方C處有生命跡象,已知在A處測(cè)得探測(cè)線與地面的夾角為30°,在B處測(cè)得探測(cè)線與地面的夾角為60°,求該生命跡象C處與地面的距離.(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73)
【答案】解:過C點(diǎn)作AB的垂線交AB的延長線于點(diǎn)D,
∵∠CAD=30°,∠CBD=60°,
∴∠ACB=30°,
∴∠CAB=∠ACB=30°,
∴BC=AB=4米,
在Rt△CDB中,BC=4米,∠CBD=60°,sin∠CBD= ,
∴sin60°= ,
∴CD=4sin60°=4× =2 ≈3.5(米),
故該生命跡象所在位置的深度約為3.5米.
【解析】本題考查的是解直角三角形的應(yīng)用,先根據(jù)題意先過C點(diǎn)作AB的垂線交AB的延長線于點(diǎn)D,由三角形外角的性質(zhì)可得出∠ACB=30°,進(jìn)而可得出BC=AB=4米,在Rt△CDB中利用銳角三角函數(shù)的定義即可求出CD的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用關(guān)于坡度坡角問題的相關(guān)知識(shí)可以得到問題的答案,需要掌握坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC、AC分別交于D、E兩點(diǎn),過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若AE=4,cosA= ,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形ABC,EF∥AC交直線AB于點(diǎn)E,DF∥AB交直線AC于點(diǎn)D.
(1)如圖1,若點(diǎn)F在邊BC上,
①補(bǔ)全圖形;
②判斷∠BAC與∠EFD的數(shù)量關(guān)系,并給予證明;
(2)若點(diǎn)F在邊BC的延長線上,(1)中的結(jié)論還成立嗎?若成立,給予證明;若不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)與圖像的交點(diǎn)在第一象限,則一次函數(shù)的圖像不經(jīng)過( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有、兩地,甲騎自行車從地到地;乙騎自行車從地到地,到達(dá)地后立即按原路返回,如圖是甲乙兩人離地的距離與行駛時(shí)間之間的函數(shù)圖像,根據(jù)圖像解答以下問題:
(1)求出甲離地的距離與行駛時(shí)間之間的函數(shù)表達(dá)式;
(2)求出點(diǎn)的坐標(biāo),并解釋改點(diǎn)坐標(biāo)所表示的實(shí)際意義;
(3)若兩人之間保持的距離不超過時(shí),能夠用無線對(duì)講機(jī)保持聯(lián)系,請(qǐng)直接寫出甲、乙兩人能夠用無線對(duì)講機(jī)保持練習(xí)時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AD⊥BC于點(diǎn)D,AE為∠BAC的平分線,且∠B=36°,∠C=66°.求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=﹣x+1(0≤x≤10)與反比例函數(shù)y= (﹣10≤x<0)在同一平面直角坐標(biāo)系中的圖象如圖所示,點(diǎn)(x1 , y1),(x2 , y2)是圖象上兩個(gè)不同的點(diǎn),若y1=y2 , 則x1+x2的取值范圍是( )
A.﹣ ≤x≤1
B.﹣ ≤x≤
C.﹣ ≤x≤
D.1≤x≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀材料)
我們知道,圖形也是一種重要的數(shù)學(xué)語言,它直觀形象,能有效地表現(xiàn)一些代數(shù)中的數(shù)量關(guān)系,而運(yùn)用代數(shù)思想也能巧妙地解決一些圖形問題.
在一次數(shù)學(xué)活動(dòng)課上,張老師準(zhǔn)備了若干張如圖1所示的甲、乙、丙三種紙片,其中甲種紙片是邊長為的正方形,乙種紙片是邊長為的正方形,丙種紙片是長為,寬為的長方形,并用甲種紙片一張,乙種紙片一張,丙種紙片兩張拼成了如圖2所示的一個(gè)大正方形.
(理解應(yīng)用)
(1)觀察圖2,用兩種不同方式表示陰影部分的面積可得到一個(gè)等式,請(qǐng)你直接寫出這個(gè)等式.
(拓展升華)
(2)利用(1)中的等式解決下列問題.
①已知,,求的值;
②已知,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論:
①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com