【題目】若拋物線L:(a,b,c是常數(shù),abc≠0)與直線l都經(jīng)過y軸上的一點(diǎn)P,且拋物線L的頂點(diǎn)Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關(guān)系.此時,直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.
(1)若直線y=mx+1與拋物線具有“一帶一路”關(guān)系,求m,n的值;
(2)若某“路線”L的頂點(diǎn)在反比例函數(shù)的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;
(3)當(dāng)常數(shù)k滿足≤k≤2時,求拋物線L:的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.
【答案】(1)m=﹣1,n=1;(2)或;(3)≤S≤.
【解析】
試題分析:(1)找出直線y=mx+1與y軸的交點(diǎn)坐標(biāo),將其代入拋物線解析式中即可求出n的值;再根據(jù)拋物線的解析式找出頂點(diǎn)坐標(biāo),將其代入直線解析式中即可得出結(jié)論;
(2)找出直線與反比例函數(shù)圖象的交點(diǎn)坐標(biāo),由此設(shè)出拋物線的解析式,再由直線的解析式找出直線與x軸的交點(diǎn)坐標(biāo),將其代入拋物線解析式中即可得出結(jié)論;
(3)由拋物線解析式找出拋物線與y軸的交點(diǎn)坐標(biāo),再根據(jù)拋物線的解析式找出其頂點(diǎn)坐標(biāo),由兩點(diǎn)坐標(biāo)結(jié)合待定系數(shù)法即可得出與該拋物線對應(yīng)的“帶線”l的解析式,找出該直線與x、y軸的交點(diǎn)坐標(biāo),結(jié)合三角形的面積找出面積S關(guān)于k的關(guān)系上,由二次函數(shù)的性質(zhì)即可得出結(jié)論.
試題解析:(1)令直線y=mx+1中x=0,則y=1,即直線與y軸的交點(diǎn)為(0,1);
將(0,1)代入拋物線中,得n=1.
∵拋物線的解析式為=,∴拋物線的頂點(diǎn)坐標(biāo)為(1,0).
將點(diǎn)(1,0)代入到直線y=mx+1中,得:0=m+1,解得:m=﹣1.
答:m=﹣1,n=1.
(2)將y=2x﹣4代入到中有,2x﹣4=,即,解得:,,∴該“路線”L的頂點(diǎn)坐標(biāo)為(﹣1,﹣6)或(3,2).
令“帶線”l:y=2x﹣4中x=0,則y=﹣4,∴“路線”L的圖象過點(diǎn)(0,﹣4).
設(shè)該“路線”L的解析式為或,由題意得:或,解得:m=2,n=,∴此“路線”L的解析式為或.
(3)令拋物線L:中x=0,則y=k,即該拋物線與y軸的交點(diǎn)為(0,k).
拋物線L:的頂點(diǎn)坐標(biāo)為(,),設(shè)“帶線”l的解析式為y=px+k,∵點(diǎn)(,)在y=px+k上,∴,解得:p=,∴“帶線”l的解析式為.
令∴“帶線”l:中y=0,則,解得:x=.
即“帶線”l與x軸的交點(diǎn)為(,0),與y軸的交點(diǎn)為(0,k),∴“帶線”l與x軸,y軸所圍成的三角形面積S=====,∵≤k≤2,∴≤≤2,∴S=,當(dāng)=1時,S有最大值,最大值為;當(dāng)=2時,S有最小值,最小值為.
故拋物線L:y=ax2+(3k2﹣2k+1)x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍為≤S≤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下問題,不適合用全面調(diào)查的是( )
A. 了解全班同學(xué)每周體育鍛煉的時間
B. 調(diào)查七年級(1)班學(xué)生的某次數(shù)學(xué)考試成績
C. 調(diào)查某班學(xué)生的身高
D. 了解全市中小學(xué)生每天的零花錢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知命題:如圖,點(diǎn)A,D,B,E在同一條直線上,且AD=BE,∠A=∠FDE,則△ABC≌△DEF.判斷這個命題是真命題還是假命題,如果是真命題,請給出證明;如果是假命題,請?zhí)砑右粋適當(dāng)條件使它成為真命題,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由若干個完全相同的小正方體堆成的一個幾何體放置在平整的地面上.
(1)請畫出這個幾何體的三視圖.
(2)如果在這個幾何體的表面噴上紅色的漆,則在所有的小正方體中,有個小正方體只有一個面是紅色,有個小正方體只有兩個面是紅色,有個小正方體只有三個面是紅色.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計一張折疊型方桌子如圖,若AO=BO=50cm,CO=DO=30cm,將桌子放平后,要使AB距離地面的高為40cm,則兩條桌腿需要叉開的∠AOB應(yīng)為( )
A.60°
B.90°
C.120°
D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的坐標(biāo)滿足下表:
x | … | -3 | -2 | -1 | 0 | 1 | … |
y | … | -3 | -2 | -3 | -6 | -11 | … |
則該函數(shù)圖象上的點(diǎn)(﹣6,y1),(m2+2m+3,y2)則下列選項(xiàng)正確的是( 。
A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE∥AD,若AC=2,CE=4,則四邊形ACEB的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點(diǎn)E為AB的中點(diǎn),連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿足怎樣的數(shù)量關(guān)系時,四邊形DCBE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷售,每年產(chǎn)銷x件.已知產(chǎn)銷兩種產(chǎn)品的有關(guān)信息如表:
其中a為常數(shù),且3≤a≤5.
(1)若產(chǎn)銷甲、乙兩種產(chǎn)品的年利潤分別為萬元、萬元,直接寫出、與x的函數(shù)關(guān)系式;
(2)分別求出產(chǎn)銷兩種產(chǎn)品的最大年利潤;
(3)為獲得最大年利潤,該公司應(yīng)該選擇產(chǎn)銷哪種產(chǎn)品?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com