【題目】如圖,矩形ABCD中,AB=12,點(diǎn)E是AD上的一點(diǎn),AE=6,BE的垂直平分線交BC的延長線于點(diǎn)F,連接EF交CD于點(diǎn)G.若G是CD的中點(diǎn),則BC的長是__________.
【答案】10.5
【解析】
利用ASA定理證明△EDG≌△FCG,從而求得DE=CF,EG=GF=,根據(jù)矩形的性質(zhì),設(shè)BC=x,則DE=x-6,DG=6,BF=2x-6,根據(jù)垂直平分線的性質(zhì)求得EG=,然后根據(jù)勾股定理列方程求解即可.
解:在矩形ABCD中,AD=BC,AB=CD=12,∠D=∠DCF=90°
∵G為CD中點(diǎn),∴DG=CG
又∵∠EGD=∠FGC
∴△EDG≌△FCG
∴DE=CF,EG=GF=
設(shè)BC=x,則DE=AD-AE=BC-AE=x-6,DG=CG==6,BF=BC+CF=BC+DE=2x-6,
又∵BE的垂直平分線交BC的延長線于點(diǎn)F,
∴EG=GF=
∴在Rt△EDG中,
解得:x=10.5
則BC的長是10.5
故答案為:10.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BC=6cm,點(diǎn)E從點(diǎn)D出發(fā)沿DA邊運(yùn)動(dòng)到點(diǎn)A,點(diǎn)F從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C運(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為2cm/s,點(diǎn)F的運(yùn)動(dòng)速度為lcm/s,它們同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),EF∥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一批單價(jià)為4元/件的日用品。若按每件5元的價(jià)格出售,每月能賣出3萬件;若按每件6元的價(jià)格銷售,每月能賣出2萬件;假定每月的銷售件數(shù)y(萬件)與價(jià)格x(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的利潤最大?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,王老師站在湖邊度假村的景點(diǎn)A處,觀察到一只水鳥由岸邊D處飛向湖中小島C處,點(diǎn)A到DC所在水平面的距離AB是15米,觀測水鳥在點(diǎn)D和點(diǎn)C處時(shí)的俯角分別為53°和11°,求C、D兩點(diǎn)之間距離.(精確到0.1.參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin11°≈0.19,cos11°≈0.98,tan11°≈0.19)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某飛機(jī)于空中探測某座山的高度,在點(diǎn)A處飛機(jī)的飛行高度是AF=3700米,從飛機(jī)上觀測山頂目標(biāo)C的俯角是45°,飛機(jī)繼續(xù)以相同的高度飛行300米到B處,此時(shí)觀測目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定“中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí)”.為此,某市就“每天在校體育活動(dòng)時(shí)間”的問題隨機(jī)抽樣調(diào)查了321名初中學(xué)生.根據(jù)調(diào)查結(jié)果將學(xué)生每天在校體育活動(dòng)時(shí)間t(小時(shí))分成,,,四組,并繪制了統(tǒng)計(jì)圖(部分).
組:組:組:組:
請根據(jù)上述信息解答下列問題:
(1)組的人數(shù)是 ;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在 組內(nèi);
(3)若該市約有12840名初中學(xué)生,請你估算其中達(dá)到國家規(guī)定體育活動(dòng)時(shí)間的人數(shù)大約有多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°
(1) 如圖1,點(diǎn)E為線段AB的中點(diǎn),連接DE、CE.若AB=4,求線段EC的長
(2) 如圖2,M為線段AC上一點(diǎn)(不與A、C重合),以AM為邊向上構(gòu)造等邊三角形AMN,線段MN與AD交于點(diǎn)G,連接NC、DM,Q為線段NC的中點(diǎn),連接DQ、MQ,判斷DM與DQ的數(shù)量關(guān)系,并證明你的結(jié)論
(3) 在(2)的條件下,若AC=,請你直接寫出DM+CN的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α,點(diǎn)P是△ABC內(nèi)一點(diǎn),且.連接PB,試探究PA,PB,PC滿足的等量關(guān)系.
圖1 圖2
(1)當(dāng)α=60°時(shí),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到,連接,如圖1所示.
由≌可以證得是等邊三角形,再由可得∠APC的大小為 度,進(jìn)而得到是直角三角形,這樣可以得到PA,PB,PC滿足的等量關(guān)系為 ;
(2)如圖2,當(dāng)α=120°時(shí),請參考(1)中的方法,探究PA,PB,PC滿足的等量關(guān)系,并給出證明;
(3)PA,PB,PC滿足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),B(4,0),C(4,3)三點(diǎn).
(1)建立平面直角坐標(biāo)系并描出A、B、C三點(diǎn)
(2)求△ABC的面積;
(3)如果在第二象限內(nèi)有一點(diǎn)P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com