【題目】如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF

ABG,連接DG,現(xiàn)在有如下4個結(jié)論:①;③∠GDE=45°;

DG=DE在以上4個結(jié)論中,正確的共有( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質(zhì)可求得∠GDE==45,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯誤的.

由折疊可知,DF=DC=DA,∠DFE=∠C=90°,

∴∠DFG=∠A=90°,

∴△ADG≌△FDG,①正確;

∵正方形邊長是12,

∴BE=EC=EF=6,

設(shè)AG=FG=x,則EG=x+6,BG=12﹣x,

由勾股定理得:EG2=BE2+BG2

即:(x+6)2=62+(12﹣x)2,

解得:x=4

∴AG=GF=4,BG=8,BG=2AG,②正確;

△ADG≌△FDG,△DCE≌△DFE,

∴∠ADG=FDG,FDE=CDE

∴∠GDE==45.③正確;

BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯誤;

∴正確說法是①②③

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖⊙O是以等腰三角形ABC的底邊BC為直徑的外接圓,BD平分∠ABC交⊙O于D,且BD與OA、AC分別交于點(diǎn)E、F延長BA、CD交于G.

(1)試證明:BF=CG.

(2)線段CD與BF有什么數(shù)量關(guān)系?為什么?

(3)試比較線段CD與BE的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EBC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F

(1)求證:AB=CF;

(2)當(dāng)BCAF滿足什么數(shù)量關(guān)系時,四邊形ABFC是矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在菱形ABCD中,∠ADC=60°,點(diǎn)HCD上任意一點(diǎn)(不與CD重合),過點(diǎn)HCD的垂線,交BD于點(diǎn)E,連接AE

1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是   

2)如圖2,將DHE繞點(diǎn)D順時針旋轉(zhuǎn),當(dāng)點(diǎn)E、HC在一條直線上時,求證:AE+EH=CH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的面積為9,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Ax軸上,點(diǎn)Cy軸上,點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個單位長度的速度向x軸正方向運(yùn)動,過點(diǎn)Ex的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點(diǎn)P,過點(diǎn)PPF⊥y軸于點(diǎn)F;記矩形OEPF和正方形OABC不重合部分的面積為S,點(diǎn)E的運(yùn)動時間為t秒.

(1)求該反比例函數(shù)的解析式.

(2)求St的函數(shù)關(guān)系式;并求當(dāng)S=時,對應(yīng)的t值.

(3)在點(diǎn)E的運(yùn)動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,BCa,ACbABc.將RtABC繞點(diǎn)O依次旋轉(zhuǎn)90°、180°和270°,構(gòu)成的圖形如圖所示.該圖是我國古代數(shù)學(xué)家趙爽制作的“勾股圓方圖”,也被稱作“趙爽弦圖”,它是我國最早對勾股定理證明的記載,也成為了2002年在北京召開的國際數(shù)學(xué)家大會的會標(biāo)設(shè)計的主要依據(jù).

1)請利用這個圖形證明勾股定理;

2)請利用這個圖形說明a2b22ab,并說明等號成立的條件;

3)請根據(jù)(2)的結(jié)論解決下面的問題:長為x,寬為y的長方形,其周長為8,求當(dāng)x,y取何值時,該長方形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn)A0),B0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是矩形ABCD的對角線AC上一點(diǎn),過點(diǎn)PEFBCGHAB.分別交AB、CD、AD、BCE、F、G、H,連接PB.若AE3,PF8.則圖中陰影部分的面積為( 。

A.8B.12C.16D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于AB兩點(diǎn),點(diǎn)C在第一象限,ACAB,且AC=AB,則點(diǎn)C的坐標(biāo)為(  )

A. (2,1) B. (1,2) C. (1,3) D. (3,1)

查看答案和解析>>

同步練習(xí)冊答案