【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點E,連接DE、BE,過點D作DF∥BE交⊙O于點F,連接BF、AF,且AF與DE相交于點G,求證:

(1)四邊形EBFD是矩形;
(2)DG=BE.

【答案】
(1)證明:∵正方形ABCD內(nèi)接于⊙O,

∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,

又∵DF∥BE,

∴∠EDF+∠BED=180°,

∴∠EDF=90°,

∴四邊形EBFD是矩形


(2)證明:∵正方形ABCD內(nèi)接于⊙O,

的度數(shù)是90°,

∴∠AFD=45°,

又∵∠GDF=90°,

∴∠DGF=∠DFG=45°,

∴DG=DF,

又∵在矩形EBFD中,BE=DF,

∴BE=DG.


【解析】(1)直接利用正方形的性質(zhì)、圓周角定理結合平行線的性質(zhì)得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,進而得出答案;(2)直接利用正方形的性質(zhì) 的度數(shù)是90°,進而得出BE=DF,則BE=DG.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l⊥AB于點B,點C在AB上,且AC:CB=2:1,點M是直線l上的動點,作點B關于直線CM的對稱點B′,直線AB′與直線CM相交于點P,連接PB.

(1)如圖2,若點P與點M重合,則∠PAB= , 線段PA與PB的比值為

(2)如圖3,若點P與點M不重合,設過P,B,C三點的圓與直線AP相交于D,連接CD,求證:①CD=CB′;②PA=2PB

(3)如圖4,若AC=2,BC=1,則滿足條件PA=2PB的點都在一個確定的圓上,在以下小題中選做一題:
①如果你能發(fā)現(xiàn)這個確定的圓的圓心和半徑,那么不必寫出發(fā)現(xiàn)過程,只要證明這個圓上的任意一點Q,都滿足QA=2QB;
②如果你不能發(fā)現(xiàn)這個確定的圓的圓心和半徑,那么請取出幾個特殊位置的P點,如點P在直線AB上,點P與點M重合等進行探究,求這個圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.
(1)求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”或“列表”等方式給出分析過程)
(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△OAB的頂點A(﹣4,8)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低.若該果園每棵果樹產(chǎn)果y(千克),增種果樹x(棵),它們之間的函數(shù)關系如圖所示.

(1)求y與x之間的函數(shù)關系式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?
(3)當增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(k﹣1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是(
A.k<5
B.k<5,且k≠1
C.k≤5,且k≠1
D.k>5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4)

(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1 , 直接寫出點A1的坐標;
(2)請畫出△ABC繞原點O順時針旋轉90°的圖形△A2B2C2 , 直接寫出點A2的坐標;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).

(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且SAOP=4SBOC , 求點P的坐標;
(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2= 的圖象交與A(1,M),B(n,﹣1)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D,連接AO,BO.得出以下結論:
①點A和點B關于直線y=﹣x對稱;
②當x<1時,y2>y1
③SAOC=SBOD;
④當x>0時,y1 , y2都隨x的增大而增大.
其中正確的是( )

A.①②③
B.②③
C.①③
D.①②③④

查看答案和解析>>

同步練習冊答案