【題目】如圖:ABC繞點A逆時針方向旋轉(zhuǎn)得到ADE,其中∠B50°,∠C60°

1)若AD平分∠BAC時,求∠BAD的度數(shù).

2)若ACDE時,ACDE交于點F,求旋轉(zhuǎn)角的度數(shù).

【答案】135°;(230°

【解析】

1)由三角形的內(nèi)角和定理可求∠BAC70°,由角平分線的性質(zhì)可求解;

2)由旋轉(zhuǎn)的性質(zhì)可得∠E=∠C60°,由三角形內(nèi)角和可求旋轉(zhuǎn)角的度數(shù).

1)∵∠B50°,∠C60°,

∴∠BAC70°,

AD平分∠BAC

∴∠BAD=∠CAD35°;

故答案為:35°

2)∵△ABC繞點A逆時針方向旋轉(zhuǎn)得到ADE,

∴∠E=∠C60°,旋轉(zhuǎn)角為∠CAE,

ACDE,

∴∠CAE30°,

∴旋轉(zhuǎn)角為30°

故答案為:30°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中, A(0,4) y 軸上, B(b,0) x 軸上一動點, 4 b 4,△ABC 是以 AB 為直角邊,B 為直角頂點的等腰直角三角形.

(1)求點 C 的坐標(用含 b 的式子表示)

(2) x 軸為對稱軸,作點 C 的對稱點 C 連接 BC、AC,請把圖形補充完整,并求出△ABC的面積(用含 b 的式子表示)

(3) B 在運動過程中, OAC 的度數(shù)是否發(fā)生變化,若變化請說明理由;若不變化,請直接 寫出 OAC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC=5,cos∠ABC=0.6,將△ABC繞點C順時針旋轉(zhuǎn),得到△A1B1C.

(1)如圖1,當點B1在線段BA延長線上時.①求證:BB1∥CA1;②求△AB1C的面積;
(2)如圖2,點E是BC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉(zhuǎn)過程中,點F的對應(yīng)點是F1 , 求線段EF1長度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“你最喜歡哪種學(xué)習(xí)方式”隨機調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下兩個不完整的統(tǒng)計圖(如圖).

請根據(jù)上面兩個不完整的統(tǒng)計圖回答以下4個問題:

(1)這次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生.

(2)補全條形統(tǒng)計圖中的缺項.

(3)在扇形統(tǒng)計圖中,選擇教師傳授的占_____%,選擇小組合作學(xué)習(xí)的占_____%.

(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學(xué)生中大約有_____人選擇小組合作學(xué)習(xí)模式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①在ABC中,點DBC邊上的一點,將ABD沿AD折疊,得到AED,AEBC交于點F.已知∠B50°,∠BAD15°,求∠AFC的度數(shù).

2)如圖②,將ABC紙片沿DE折疊,使點A落在四邊形BCED的內(nèi)部點A′的位置,∠1、∠2與∠A之間存在一定的數(shù)量關(guān)系,請判斷它們之間的關(guān)系,并說明理由.

3)如圖③,將ABC紙片沿DE折疊,使點A落在四邊形BCED的外部點A′的位置,此時∠1、∠2與∠A之間也存在一定的數(shù)量關(guān)系,請直接寫出它們之間的關(guān)系,無需說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市公交公司為應(yīng)對春運期間的人流高峰,計劃購買AB兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,

(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?

(2)若該公司預(yù)計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為(
A.13
B.14
C.15
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出如下四個命題,其中原命題與逆命題均為真命題的個數(shù)是(

①若,,則;

,則

角的平分線上的點到角的兩邊的距離相等;

線段的垂直平分線上的點到線段兩端點距離相等.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案