【題目】如圖,已知矩形的面積為,依次取矩形各邊中點(diǎn)、、、,順次連結(jié)各中點(diǎn)得到第個(gè)四邊形,再依次取四邊形各邊中點(diǎn)、、、,順次連結(jié)各中點(diǎn)得到第個(gè)四邊形,……,按照此方法繼續(xù)下去,則第個(gè)四邊形的面積為________.
【答案】
【解析】
根據(jù)矩形ABCD的面積、四邊形A1B1C1D1面積、四邊形A2B2C2D2的面積、四邊形A3B3C3D3的面積,即可發(fā)現(xiàn)中點(diǎn)四邊形的面積等于原四邊形的面積的一半,找到規(guī)律即可解題.
解:順次連接矩形ABCD四邊的中點(diǎn)得到四邊形A1B1C1D1,則四邊形A1B1C1D1的面積為矩形ABCD面積的,順次連接四邊形A1B1C1D1四邊的中點(diǎn)得到四邊形A2B2C2D2,則四邊形A2B2C2D2的面積為四邊形A1B1C1D1面積的一半,即為矩形ABCD面積的,順次連接四邊形A2B2C2D2四邊的中點(diǎn)得四邊形A3B3C3D3,則四邊形A3B3C3D3的面積為四邊形A2B2C2D2面積的一半,即為矩形ABCD面積的,故中點(diǎn)四邊形的面積等于原四邊形的面積的一半,則四邊形AnBnCnDn面積為矩形ABCD面積的,
又∵矩形ABCD的面積為1,
∴四邊形AnBnCnDn的面積=1×=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動(dòng)適應(yīng)社會(huì),促進(jìn)書(shū)本知識(shí)和生活經(jīng)驗(yàn)的深度融合,我市某中學(xué)決定組織部分班級(jí)去赤壁開(kāi)展研學(xué)旅行活動(dòng),在參加此次活動(dòng)的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒(méi)人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.現(xiàn)有甲、乙兩種大客車(chē),它們的載客量和租金如表所示.
甲種客車(chē) | 乙種客車(chē) | |
載客量/(人/輛) | 30 | 42 |
租金/(元/輛) | 300 | 400 |
學(xué)校計(jì)劃此次研學(xué)旅行活動(dòng)的租車(chē)總費(fèi)用不超過(guò)3100元,為了安全,每輛客車(chē)上至少要有2名老師.
(1)參加此次研學(xué)旅行活動(dòng)的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車(chē)坐,又要保證每輛客車(chē)上至少要有2名老師,可知租用客車(chē)總數(shù)為 輛;
(3)你能得出哪幾種不同的租車(chē)方案?其中哪種租車(chē)方案最省錢(qián)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c,則滿(mǎn)足下列條件的一定是直角三角形的是( )
A. ∠A:∠B:∠C=3:4:5B. a:b:c=1::3
C. a=7,b=24,c=25D. a=32,b=42,c=52
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點(diǎn)C,直線(xiàn)y=x被⊙P截得的弦AB的長(zhǎng)為,則a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=25°,O為AB的中點(diǎn). 將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)θ °至OP(0<θ<180),當(dāng)△BCP恰為軸對(duì)稱(chēng)圖形時(shí),θ的值為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)與軸,軸的交點(diǎn)分別為,直線(xiàn)交軸于點(diǎn),兩條直線(xiàn)的交點(diǎn)為,點(diǎn)是線(xiàn)段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸,交軸于點(diǎn),連接.
求的面積;
在線(xiàn)段上是否存在一點(diǎn),使四邊形為矩形,若存在,求出點(diǎn)坐標(biāo):若不存在,請(qǐng)說(shuō)明理由;
若四邊形的面積為,設(shè)點(diǎn)的坐標(biāo)為,求出關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)A,B,點(diǎn)B的橫坐標(biāo)是4.點(diǎn)P是第一象限內(nèi)反比例函數(shù)圖象上的動(dòng)點(diǎn),且在直線(xiàn)AB的上方.
(1)求k的值;
(2)設(shè)直線(xiàn)PA,PB與x軸分別交于點(diǎn)M,N,求證:△PMN是等腰三角形;
(3)設(shè)點(diǎn)Q是反比例函數(shù)圖象上位于P,B之間的動(dòng)點(diǎn)(與點(diǎn)P,B不重合),連接AQ,BQ,比較∠PAQ與∠PBQ的大小,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC,AB=AC=24厘米,∠B=∠C,BC=16厘米,點(diǎn)D為AB的中點(diǎn).點(diǎn)P在線(xiàn)段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為v厘米/秒,則當(dāng)△BPD與△CQP全等時(shí),v的值為_____ 厘米/秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一快遞倉(cāng)庫(kù)里堆放著若干個(gè)相同的正方體快遞件,管理員從正面看和從左面看這堆快遞如圖所示,則這正方體快遞件最多有_____件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com