【題目】在等邊三角形ABC中,點(diǎn)D,E分別在BC,AC上,且DC=AE,AD與BE交于點(diǎn)P,連接PC.
(1)證明:ΔABE≌ΔCAD.
(2)若CE=CP,求證∠CPD=∠PBD.
(3)在(2)的條件下,證明:點(diǎn)D是BC的黃金分割點(diǎn).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析
【解析】
(1)因?yàn)椤?/span>ABC是等邊三角形,所以AB=AC,∠BAE=∠ACD=60°,又AE=CD,即可證明ΔABE≌ΔCAD;
(2)設(shè)則由等邊對(duì)等角可得可得以及,故;
(3)可證可得,故由于可得,根據(jù)黃金分割點(diǎn)可證點(diǎn)是的黃金分割點(diǎn);
證明:
(1) ∵△ABC是等邊三角形,
∴AB=AC,∠BAE=∠ACD=60°,
在ΔABE與ΔCDA中,AB=AC,∠BAE=∠ACD=60°,AE=CD,
∴△AEB≌△CDA;
(2)由(1)知,
則,
設(shè),
則,
∵,
∴,
∴,
又,
∴;
(3)在和中,
,,
∴,
∴,
∴,
又,
∴,
∴點(diǎn)是的黃金分割點(diǎn);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4正方形ABCD中,以AB為腰向正方形內(nèi)部作等腰△ABE,點(diǎn)G在CD上,且CG=3DG.連接BG并延長(zhǎng),與AE交于點(diǎn)F,與AD延長(zhǎng)線交于點(diǎn)H.連接DE交BH于點(diǎn)K.若AE2=BFBH,則S△CDE=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,3),拋物線G:y=x2-2x+c(c為常數(shù))的頂點(diǎn)坐標(biāo)為M,其對(duì)稱軸與x軸相交于點(diǎn)N.
(1)若拋物線G經(jīng)過(guò)點(diǎn)A,求出其解析式,并寫(xiě)出點(diǎn)M的坐標(biāo).
(2)若點(diǎn)B(x1,y1)和點(diǎn)C(x1+3,y2)在拋物線G上,試比較y1,y2的大。
(3)連接OM,若45°≤∠MON≤60°,請(qǐng)直接寫(xiě)出c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意一個(gè)三位數(shù),如果滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個(gè)數(shù)為“相異數(shù)”.將一個(gè)“相異數(shù)”任意兩個(gè)數(shù)位上的數(shù)字對(duì)調(diào)后可以得到三個(gè)不同的新三位數(shù),把這三個(gè)新三位數(shù)的和與111的商記為.例如,對(duì)調(diào)百位與十位上的數(shù)字得到213,對(duì)調(diào)百位與個(gè)位上的數(shù)字得到321,對(duì)調(diào)十位與個(gè)位上的數(shù)字得到132,這三個(gè)新三位數(shù)的和,,所以.
(1)計(jì)算:,;
(2)小明在計(jì)算時(shí)發(fā)現(xiàn)幾個(gè)結(jié)果都為正整數(shù),小明猜想所有的均為正整數(shù),你覺(jué)得這個(gè)猜想正確嗎?請(qǐng)判斷并說(shuō)明理由;
(3)若,都是“相異數(shù)”,其中,(,,、都是正整數(shù)),當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠C=Rt∠,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB、BC分別交于點(diǎn)E、D,則AE的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與x軸交于點(diǎn)A,與雙曲線的一個(gè)交點(diǎn)為B(-1,4).
(1)求直線與雙曲線的表達(dá)式;
(2)過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,若點(diǎn)P在雙曲線上,且△PAC的面積為4,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程有兩個(gè)實(shí)數(shù)根x1,x2.
(1)求實(shí)數(shù)k的取值范圍;
(2)是否存在實(shí)數(shù)k使得成立?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解學(xué)生“第二課堂“活動(dòng)的選修情況,對(duì)報(bào)名參加A.跆拳道,B.聲樂(lè),C.足球,D.古典舞這四項(xiàng)選修活動(dòng)的學(xué)生(每人必選且只能選修一項(xiàng))進(jìn)行抽樣調(diào)查.并根據(jù)收集的數(shù)據(jù)繪制了圖①和圖②兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生共有 人;在扇形統(tǒng)計(jì)圖中,B所對(duì)應(yīng)的扇形的圓心角的度數(shù)是 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查選修古典舞的學(xué)生中有4名團(tuán)員,其中有1名男生和3名女生,學(xué)校想從這4人中任選2人進(jìn)行古典舞表演.請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求被選中的2人恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知矩形中的點(diǎn),拋物線經(jīng)過(guò)原點(diǎn)和點(diǎn),并且有最低點(diǎn)點(diǎn),分別在線段,上,且,,直線的解析式為,其圖像與拋物線在軸下方的圖像交于點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)時(shí),求的取值范圍;
(3)在線段上是否存在點(diǎn),使得,若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com