【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都是1,每個小正方形的頂點(diǎn)叫做格點(diǎn).網(wǎng)格中有一個格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1 (要求A與A1,B與B1,C與C1相對應(yīng));
(2)求△ABC的面積;
(3)在直線l上找一點(diǎn)P,使得△PAC的周長最。
【答案】(1)作圖見解析;(2)5;(3)點(diǎn)P即為所求的點(diǎn).
【解析】試題分析:(1)根據(jù)軸對稱性作△ABC中頂點(diǎn)A,B,C關(guān)于直線l的對稱點(diǎn)A1,B1,C1,然后再連接A1,B1,C1可得△A1B1C1,(2)利用割補(bǔ)法求△ABC的面積,利用過△ABC各頂點(diǎn)的矩形減去三個直角三角形的面積可求解,(3)要在直線l要上找到一點(diǎn)P,使△PAC周長最短,因?yàn)?/span>AC長為定值,所以要使△PAC周長最短,則使PA+PC的和最短,可作C關(guān)于直線l的對稱點(diǎn)C1,連接A C1, 則A C1與直線l的交點(diǎn)即為所求的點(diǎn)P.
試題解析:(1)所作圖形如圖所示,
(2) ,所以△ABC的面積為5,
(3)連接A C1,則A C1與直線l的交點(diǎn)P即為所求的點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】肥皂泡的泡壁厚度大約是0.0007mm,0.0007用科學(xué)記數(shù)法表示為( 。
A.0.7×10﹣3
B.7×10﹣3
C.7×10﹣4
D.7×10﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖,點(diǎn)M、N把線段AB分割成AM、MN、NB,若以AM、MN、NB為邊的三角形是一個直角三角形,則稱點(diǎn)M、N是線段AB的勾股分割點(diǎn).
(1)已知M、N把線段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,則點(diǎn)M、N是線段AB的勾股分割點(diǎn)嗎?請說明理由.
(2)已知點(diǎn)M、N是線段AB的勾股分割點(diǎn),且AM為直角邊,若AB=24,AM=6,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程x2-4x+5-a=0有實(shí)數(shù)根,則a的取值范圍是( 。
A.a≥1
B.a>1
C.a≤1
D.a<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一架梯子AB斜靠在墻面上,且AB的長為25米.
(1)若梯子底端離墻角的距離OB為7米,求這個梯子的頂端A距地面有多高?
(2)在(1)的條件下,如果梯子的頂端A下滑4米到點(diǎn)A,,那么梯子的底端B在水平方向滑動的距離BB,為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】連接一個幾何圖形上任意兩點(diǎn)間的線段中,最長的線段稱為這個幾何圖形的直徑,根據(jù)此定義,圖(扇形、菱形、直角梯形、紅十字圖標(biāo))中“直徑”最小的是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填在相應(yīng)的橫線上:
1,-0.20, ,325,-789,0,-23.13,0.618,-2014,π,0.1010010001….
正數(shù)有:;
分?jǐn)?shù)有:;
負(fù)數(shù)有:;
正整數(shù)有:;
非正數(shù)有:;
負(fù)整數(shù)有:;
非負(fù)數(shù)有:;
負(fù)分?jǐn)?shù)有:;
非負(fù)整數(shù)有: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場把一個雙肩背包按進(jìn)價提高50%標(biāo)價,然后再按八折出售,這樣商場每賣出一個書包就可盈利8元,求每個雙肩背書包的進(jìn)價是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com