【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與X軸交于點(diǎn)C,與Y軸交于點(diǎn)D,已知,A(n,1),點(diǎn)B的坐標(biāo)為(﹣2,m)
(1)求反比例函數(shù)的解析式和一次函數(shù)的解析式;
(2)連結(jié)BO,求△AOB的面積;
(3)觀(guān)察圖象直接寫(xiě)出一次函數(shù)的值大于反比例函數(shù)的值時(shí)x的取值范圍是 .
【答案】(1)y=;y=x﹣;(2);(3)﹣2<x<0或x>3;
【解析】
(1)過(guò)A作AM⊥x軸于M,根據(jù)勾股定理求出OM,得出A的坐標(biāo),把A得知坐標(biāo)代入反比例函數(shù)的解析式求出解析式,吧B的坐標(biāo)代入求出B的坐標(biāo),吧A、B的坐標(biāo)代入一次函數(shù)的解析式,即可求出解析式.
(2)求出直線(xiàn)AB交y軸的交點(diǎn)坐標(biāo),即可求出OD,根據(jù)三角形面積公式求出即可.
(3)根據(jù)A、B的橫坐標(biāo)結(jié)合圖象即可得出答案.
解:
(1)過(guò)A作AM⊥x軸于M,
則AM=1,OA=,由勾股定理得:OM=3,
即A的坐標(biāo)是(3,1),
把A的坐標(biāo)代入y=得:k=3,
即反比例函數(shù)的解析式是y=.
把B(﹣2,n)代入反比例函數(shù)的解析式得:n=﹣,
即B的坐標(biāo)是(﹣2,﹣),
把A、B的坐標(biāo)代入y=ax+b得:,
解得:k=.b=﹣,
即一次函數(shù)的解析式是y=x﹣.
(2)連接OB,
∵y=x﹣,
∴當(dāng)x=0時(shí),y=﹣,
即OD=,
∴△AOB的面積是S△BOD+S△AOD=××2+××3=.
(3)一次函數(shù)的值大于反比例函數(shù)的值時(shí)x的取值范圍是﹣2<x<0或x>3,
故答案為:﹣2<x<0或x>3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在和中,,,,,,三點(diǎn)在同一條直線(xiàn)上,連接,則下列結(jié)論正確的是___________.
①
②
③
④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的的平分線(xiàn)與的外角平分線(xiàn)相交于點(diǎn),點(diǎn)分別在線(xiàn)段、上,點(diǎn)在的延長(zhǎng)線(xiàn)上,與關(guān)于直線(xiàn)對(duì)稱(chēng),若,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個(gè)過(guò)程中,跑步者距起跑線(xiàn)的距離y(單位:m)與跑步時(shí)間t(單位:s)的對(duì)應(yīng)關(guān)系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線(xiàn)同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn).
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度.
C. 小蘇在跑最后100m的過(guò)程中,與小林相遇2次.
D. 小蘇前15s跑過(guò)的路程小于小林前15s跑過(guò)的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將兩個(gè)含30°角的三角尺擺放在一起,可以證得△ABD是等邊三角形,于是我們得到:在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.
交換命題的條件和結(jié)論,得到下面的命題:
在直角△ABC中,∠ACB=90°,如果,那么∠BAC=30°.
請(qǐng)判斷此命題的真假,若為真命題,請(qǐng)給出證明;若為假命題,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):
如圖1,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為__________;
(2)深入探究:
如圖2,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由;
(3)拓展延伸:
如圖3,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華和小晶上山游玩,小華步行,小晶乘坐纜車(chē),相約在山頂纜車(chē)的終點(diǎn)會(huì)合. 已知小華歩行的路程是纜車(chē)所經(jīng)線(xiàn)路長(zhǎng)的2倍,小晶在小華出發(fā)后50分鐘才坐上纜車(chē),纜車(chē)的平均速度為每分鐘180米. 圖中的折線(xiàn)反映了小華行走的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系.
(1)小華行走的總路程是___________米,他途中休息了___________分鐘;小華休息之后行走的速度是每分鐘___________米;
(2)當(dāng)時(shí),與的函數(shù)關(guān)系式是___________.
(3)當(dāng)小晶到達(dá)纜車(chē)終點(diǎn)時(shí),小華離纜車(chē)終點(diǎn)的路程是___________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校在八年級(jí)新生中舉行了全員參加的數(shù)學(xué)應(yīng)用能力大賽,試卷題目共10題,每題10分.現(xiàn)分別從三個(gè)班中各隨機(jī)取10名同學(xué)的成績(jī)(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
人數(shù) 班級(jí) | 60分人數(shù) | 70分人數(shù) | 80分人數(shù) | 90分人數(shù) | 100分人數(shù) |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
平均數(shù) | 中位數(shù) | 眾數(shù) | |
83 | 80 | 80 | |
2班 | 83 | ||
3班 | 80 | 80 |
分析數(shù)據(jù):
根據(jù)以上信息回答下列問(wèn)題:
(1)請(qǐng)直接寫(xiě)出表格中,,,的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績(jī)比較好?請(qǐng)說(shuō)明理由(寫(xiě)兩條支持你結(jié)論的理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線(xiàn)AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線(xiàn)段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com