【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與X軸交于點(diǎn)C,與Y軸交于點(diǎn)D,已知,A(n,1),點(diǎn)B的坐標(biāo)為(﹣2,m)

(1)求反比例函數(shù)的解析式和一次函數(shù)的解析式;

(2)連結(jié)BO,求△AOB的面積;

(3)觀(guān)察圖象直接寫(xiě)出一次函數(shù)的值大于反比例函數(shù)的值時(shí)x的取值范圍是   

【答案】(1)y=;y=x﹣;(2);(3)﹣2<x<0x>3;

【解析】

(1)過(guò)AAM⊥x軸于M,根據(jù)勾股定理求出OM,得出A的坐標(biāo),把A得知坐標(biāo)代入反比例函數(shù)的解析式求出解析式,吧B的坐標(biāo)代入求出B的坐標(biāo),吧A、B的坐標(biāo)代入一次函數(shù)的解析式,即可求出解析式.
(2)求出直線(xiàn)ABy軸的交點(diǎn)坐標(biāo),即可求出OD,根據(jù)三角形面積公式求出即可.
(3)根據(jù)A、B的橫坐標(biāo)結(jié)合圖象即可得出答案.

:

(1)過(guò)AAMx軸于M,

AM=1,OA=,由勾股定理得:OM=3,

A的坐標(biāo)是(3,1),

A的坐標(biāo)代入y=得:k=3,

即反比例函數(shù)的解析式是y=

B(﹣2,n)代入反比例函數(shù)的解析式得:n=﹣,

B的坐標(biāo)是(﹣2,﹣),

A、B的坐標(biāo)代入y=ax+b得:,

解得:k=.b=﹣,

即一次函數(shù)的解析式是y=x﹣

(2)連接OB,

y=x﹣,

∴當(dāng)x=0時(shí),y=﹣,

OD=

∴△AOB的面積是SBOD+SAOD=××2+××3=

(3)一次函數(shù)的值大于反比例函數(shù)的值時(shí)x的取值范圍是﹣2<x<0x>3,

故答案為:﹣2<x<0x>3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,三點(diǎn)在同一條直線(xiàn)上,連接,則下列結(jié)論正確的是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的平分線(xiàn)與的外角平分線(xiàn)相交于點(diǎn),點(diǎn)分別在線(xiàn)段上,點(diǎn)的延長(zhǎng)線(xiàn)上,關(guān)于直線(xiàn)對(duì)稱(chēng),若,則__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個(gè)過(guò)程中,跑步者距起跑線(xiàn)的距離y單位m與跑步時(shí)間t單位s的對(duì)應(yīng)關(guān)系如下圖所示.下列敘述正確的是( )

A. 兩人從起跑線(xiàn)同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇在跑最后100m的過(guò)程中,與小林相遇2

D. 小蘇前15s跑過(guò)的路程小于小林前15s跑過(guò)的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將兩個(gè)含30°角的三角尺擺放在一起,可以證得ABD是等邊三角形,于是我們得到:在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.

交換命題的條件和結(jié)論,得到下面的命題:

在直角ABC中,ACB=90°,如果,那么BAC=30°

請(qǐng)判斷此命題的真假,若為真命題,請(qǐng)給出證明;若為假命題,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,在等邊三角形ABC中,點(diǎn)MBC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NCAB的位置關(guān)系為__________;

(2)深入探究

如圖2,在等腰三角形ABC中,BA=BC,點(diǎn)MBC邊上異于BC的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由;

(3)拓展延伸

如圖3,在正方形ADBC中,AD=AC,點(diǎn)MBC邊上異于BC的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華和小晶上山游玩,小華步行,小晶乘坐纜車(chē),相約在山頂纜車(chē)的終點(diǎn)會(huì)合. 已知小華歩行的路程是纜車(chē)所經(jīng)線(xiàn)路長(zhǎng)的2倍,小晶在小華出發(fā)后50分鐘才坐上纜車(chē),纜車(chē)的平均速度為每分鐘180. 圖中的折線(xiàn)反映了小華行走的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系.

1)小華行走的總路程是___________米,他途中休息了___________分鐘;小華休息之后行走的速度是每分鐘___________米;

2)當(dāng)時(shí),的函數(shù)關(guān)系式是___________.

3)當(dāng)小晶到達(dá)纜車(chē)終點(diǎn)時(shí),小華離纜車(chē)終點(diǎn)的路程是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校在八年級(jí)新生中舉行了全員參加的數(shù)學(xué)應(yīng)用能力大賽,試卷題目共10題,每題10.現(xiàn)分別從三個(gè)班中各隨機(jī)取10名同學(xué)的成績(jī)(單位:分),收集數(shù)據(jù)如下:

1班:90,70,80,8080,8080,90,80,100;

2班:70,80,80,80,60,90,90,90,100,90;

3班:90,6070,8080,80,80,90,100100.

整理數(shù)據(jù):

人數(shù)

班級(jí)

60分人數(shù)

70分人數(shù)

80分人數(shù)

90分人數(shù)

100分人數(shù)

1

0

1

6

2

1

2

1

1

3

1

3

1

1

4

2

2

平均數(shù)

中位數(shù)

眾數(shù)

83

80

80

2

83

3

80

80

分析數(shù)據(jù):

根據(jù)以上信息回答下列問(wèn)題:

1)請(qǐng)直接寫(xiě)出表格中,,的值;

2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績(jī)比較好?請(qǐng)說(shuō)明理由(寫(xiě)兩條支持你結(jié)論的理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線(xiàn)AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線(xiàn)段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案