如圖,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12,動點P從點A出發(fā),沿折線AD-DC-CB以每秒1個單位長的速度運動到點B停止.設運動時間為t秒,y=SEPF,則y與t的函數(shù)圖象大致是(     )

 

 

【答案】

A.

【解析】

試題分析:分三段考慮,①點P在AD上運動,②點P在DC上運動,③點P在BC上運動,分別求出y與t的函數(shù)表達式,繼而可得出函數(shù)圖象.

如圖:

在Rt△ADE中,AD==13,

在Rt△CFB中,BC=,

①點P在AD上運動:

過點P作PM⊥AB于點M,則PM=APsin∠A=,

此時y=EF×PM=t,為一次函數(shù);

②點P在DC上運動,y=EF×DE=30;

③點P在BC上運動,過點P作PN⊥AB于點N,則PN=BPsin∠B=(AD+CD+BC-t)=,

則y=EF×PN=,為一次函數(shù).

綜上可得選項A的圖象符合.

故選A.

考點: 動點問題的函數(shù)圖象.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點O,那么,圖中全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點,若FO-EO=3,則BC-AD等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長;
(2)試在邊AB上確定點P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習冊答案