【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?

【答案】
(1)證明:∵D、E分別是AB、AC的中點,

∴DE是△ABC的中位線,

∴DE∥BC,

又∵EF∥AB,

∴四邊形DBFE是平行四邊形;


(2)解:當AB=BC時,四邊形DBFE是菱形.

理由如下:∵D是AB的中點,

∴BD= AB,

∵DE是△ABC的中位線,

∴DE= BC,

∵AB=BC,

∴BD=DE,

又∵四邊形DBFE是平行四邊形,

∴四邊形DBFE是菱形.


【解析】(1)根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得DE∥BC,然后根據(jù)兩組對邊分別平行的四邊形是平行四邊形證明;(2)根據(jù)鄰邊相等的平行四邊形是菱形證明.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10.若將△PAC繞點A逆時針旋轉(zhuǎn)后,得到△P′AB.

(1)求點P與點P′之間的距離;
(2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、BC在小正方形的頂點上.

在圖中畫出與關(guān)于直線l成軸對稱的;

三角形ABC的面積為______;

AC為邊作與全等的三角形,則可作出______個三角形與全等;

在直線l上找一點P,使的長最短.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】盒中有x個黑球和y個白球,這些球除顏色外無其他差別.若從盒中隨機取一個球,它是黑球的概率是 ;若往盒中再放進1個黑球,這時取得黑球的概率變?yōu)?
(1)填空:x= , y=;
(2)小王和小林利用x個黑球和y個白球進行摸球游戲.約定:從盒中隨機摸取一個,接著從剩下的球中再隨機摸取一個,若兩球顏色相同則小王勝,若顏色不同則小林勝.求兩個人獲勝的概率各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是菱形ABCD對角線CA的延長線上任意一點,以線段AE為邊作一個菱形AEFG,且菱形AEFG∽菱形ABCD,連接EB,GD.
(1)求證:EB=GD;
(2)若∠DAB=60°,AB=2,AG= ,求GD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐標系中描出各點,畫出△ABC

(2)求△ABC的面積;

(3)設(shè)點P在坐標軸上,且△ABP與△ABC的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規(guī)律,則第(n)個圖形中面積為1的正方形的個數(shù)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1),規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位”為一次交換,如此這樣,連續(xù)經(jīng)過2016次變換后,正方形ABCD的對角線交點M的坐標變?yōu)?/span>

查看答案和解析>>

同步練習冊答案