【題目】若z=3x(3y﹣x)﹣(4x﹣3y)(x+3y)
(1)若x,y均為整數(shù),求證:當(dāng)x是3的倍數(shù)時(shí),z能被9整除;
(2)若y=x+1,求z的最小值.

【答案】解:(1)證明:
z=3x(3y﹣x)﹣(4x﹣3y)(x+3y)
=9xy﹣3x2﹣(4x2+9xy﹣9y2
=9xy﹣3x2﹣4x2﹣9xy+9y2
=﹣7x2+9y2
∵x是3的倍數(shù)時(shí),
∴z能被9整除.
(2)當(dāng)y=x+1時(shí),
則z=﹣7x2+9(x+1)2
=2x2+18x+9
=2(x+2
∵2(x+2≥0
∴z的最小值是﹣
【解析】(1)首先利用整式的乘法計(jì)算方法計(jì)算,進(jìn)一步合并求證得出答案即可;
(2)把y=x+1代入(1)中,整理利用二次函數(shù)的性質(zhì)解決問題.
【考點(diǎn)精析】利用二次函數(shù)的最值對題目進(jìn)行判斷即可得到答案,需要熟知如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E、F在四邊形ABCD的對角線延長線上,AE=CF,DE∥BF,∠1=∠2.
(1)求證:△AED≌△CFB;
(2)若AD⊥CD,四邊形ABCD是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動(dòng)”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.
(1)這次被調(diào)查的同學(xué)共有名;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校18 000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算; +20160﹣| ﹣2|+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(π﹣ 0+| ﹣1|+( 1﹣2sin45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)幾何體:

其中左視圖與俯視圖相同的幾何體共有( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點(diǎn)經(jīng)過旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60°,又從A點(diǎn)測得D點(diǎn)的俯角β為30°,若旗桿底總G為BC的中點(diǎn),則矮建筑物的高CD為( )

A.20米
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),則位似中心的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若點(diǎn)P(a,b)在函數(shù)y= 的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y= 的一個(gè)“派生函數(shù)”.例如:點(diǎn)(2, )在函數(shù)y= 的圖象上,則函數(shù)y=2x2+ x稱為函數(shù)y= 的一個(gè)“派生函數(shù)”.現(xiàn)給出以下兩個(gè)命題:(1)存在函數(shù)y= 的一個(gè)“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè);(2)函數(shù)y= 的所有“派生函數(shù)”,的圖象都進(jìn)過同一點(diǎn).
下列判斷正確的是(
A.命題(1)與命題(2)都是真命題
B.命題(1)與命題(2)都是假命題
C.命題(1)是假命題,命題(2)是真命題
D.命題(1)是真命題,命題(2)是假命題

查看答案和解析>>

同步練習(xí)冊答案