【題目】如圖,在正方形ABCD中,P是CD邊上一點(diǎn),DF⊥AP,BE⊥AP.

求證:AE=DF.

【答案】詳見解析

【解析】

根據(jù)正方形的性質(zhì)可得AB=AD,∠BAD=90°,再根據(jù)AEB=∠AFD=90°,∠ABE+∠BAE=90°,得到ABE=∠DAF,然后通過“角角邊”證得ABE ≌△ADF,則可得AE=DF

證明四邊形ABCD為正方形,

AB=AD,∠BAD=90°,

∴∠DAF+∠BAE=90°,

DFAP,BEAP

∴∠AEB=∠AFD=90°,

∴∠ABE+∠BAE=90°,

∴∠ABE=∠DAF,

ABE ADF中,

,

∴△ABE ≌△ADFAAS),

AE=DF全等三角形對(duì)應(yīng)邊相等).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)最大的水果公司“佳沃鑫榮懋”旗下子公司“歡樂果園”購(gòu)進(jìn)某種水果的成本為20元/kg,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(jià)p(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式為P= ,且其日銷售量y(kg)與時(shí)間t(天)的關(guān)系如表:

時(shí)間t(天)

1

3

6

10

20

40

日銷售量y(kg)

118

114

108

100

80

40


(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤(rùn)最大?最大日銷售利潤(rùn)為多少?
(3)在實(shí)際銷售前24天中,子公司決定每銷售1kg水果就捐贈(zèng)n元利潤(rùn)(n<9)給“精準(zhǔn)扶貧”對(duì)象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,O為AC中點(diǎn),過O點(diǎn)的直線分別于AB、CD交于E、F,連結(jié)BF交AC與點(diǎn)M,連結(jié)DE、BO,若∠COB=60°,F(xiàn)O=FC

求證:①FB⊥OC,OM=CM;

四邊形EBFD是菱形;

③MB:OE=3:2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項(xiàng)目的活動(dòng),為了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)調(diào)查了該校m名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇四種活動(dòng)項(xiàng)目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計(jì)圖表:
學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表

項(xiàng)目

學(xué)生數(shù)(名)

百分比

丟沙包

20

10%

打籃球

60

p%

跳大繩

n

40%

踢毽球

40

20%

根據(jù)圖表中提供的信息,解答下列問題:

(1)m= , n= , p=;
(2)請(qǐng)根據(jù)以上信息直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,點(diǎn)E、F分別是邊AD、AB的中點(diǎn),連接EF.

(1)如圖1若點(diǎn)G是邊BC的中點(diǎn),連接FG則EF與FG關(guān)系為   ;

(2)如圖2,若點(diǎn)P為BC延長(zhǎng)線上一動(dòng)點(diǎn)連接FP,將線段FP以點(diǎn)F為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)900,得到線段FQ,連接EQ,請(qǐng)猜想EF、EQ、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論

(3)若點(diǎn)P為CB延長(zhǎng)線上一動(dòng)點(diǎn)按照(2)中的作法,在圖3中補(bǔ)全圖形,并直接寫出EF、EQ、BP三者之間的數(shù)量關(guān)系    .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小武新家裝修,在裝修客廳時(shí),購(gòu)進(jìn)彩色地磚和單色地磚共100塊,共花費(fèi)5600元.已知彩色地磚的單價(jià)是80/塊,單色地磚的單價(jià)是40/塊.

(1)兩種型號(hào)的地磚各采購(gòu)了多少塊?

(2)如果廚房也要鋪設(shè)這兩種型號(hào)的地磚共60塊,且采購(gòu)地磚的費(fèi)用不超過3200元,那么彩色地磚最多能采購(gòu)多少塊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【新知理解】

如圖①,點(diǎn)C在線段AB上,圖中共有三條線段ABACBC,若其中有一條線段的長(zhǎng)度是另外一條線段長(zhǎng)度的2倍,則稱點(diǎn)C是線段AB巧點(diǎn)”.

線段的中點(diǎn)__________這條線段的巧點(diǎn);(填不是.

AB = 12cm,點(diǎn)C是線段AB的巧點(diǎn),則AC=___________cm;

【解決問題】

3如圖②,已知AB=12cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向點(diǎn)B勻速移動(dòng):點(diǎn)Q從點(diǎn)B出發(fā),以1cm/s的速度沿BA向點(diǎn)A勻速移動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止,設(shè)移動(dòng)的時(shí)間為ts.當(dāng)t為何值時(shí),A、P、Q三點(diǎn)中其中一點(diǎn)恰好是另外兩點(diǎn)為端點(diǎn)的線段的巧點(diǎn)?說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(1,0),B(4,0),C(0,-4)三點(diǎn),點(diǎn)D是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),連結(jié)DC,DB,則△BCD的面積的最大值是( )

A.7
B.7.5
C.8
D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案