【題目】草莓是種老少皆宜的食品,深受市民歡迎.今年3月份,甲,乙兩超市分別用3000元以相同的進(jìn)價(jià)購(gòu)進(jìn)質(zhì)量相同的草莓.甲超市銷售方案是:將草莓按大小分類包裝銷售,其中大草莓400千克,以進(jìn)價(jià)的2倍價(jià)格銷售,剩下的小草莓以高于進(jìn)價(jià)的10%銷售.乙超市銷售方案是:不將草莓按大小分類,直接包裝銷售,價(jià)格按甲超市大、小兩種草莓售價(jià)的平均數(shù)定價(jià).若兩超市將草莓全部售完,其中甲超市獲利2100元(其他成本不計(jì)).

1)草莓進(jìn)價(jià)為每千克多少元?

2)乙超市獲利多少元?并比較哪種銷售方式更合算.

【答案】1)草莓進(jìn)價(jià)為每千克5元;(2)甲超市銷售方式更合算.

【解析】

1)先設(shè)草莓進(jìn)價(jià)為每千克x元,根據(jù)兩超市將草莓全部售完,其中甲超市獲利2100元列出方程,求出x的值,再進(jìn)行檢驗(yàn)即可求出答案;

2)根據(jù)(1)求出每個(gè)超市草莓總量,再根據(jù)大、小草莓售價(jià)分別為10元和5.5元,求出乙超市獲利,再與甲超市獲利2100元相比較即可.

1)設(shè)草莓進(jìn)價(jià)為每千克.

由題意,得

解得.

經(jīng)檢驗(yàn)是原方程的根.

答:草莓進(jìn)階為每千克5.

2)由(1)知:每個(gè)超市草莓總量:(千克),

大、小草莓售價(jià)分別為10元和5.5.

乙超市獲利:(元).

甲超市獲利,甲超市銷售方式更合算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P上一動(dòng)點(diǎn),連接AP,作∠APC=45°,交弦AB于點(diǎn)CAB=6cm

小元根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)線段AP,PCAC的長(zhǎng)度進(jìn)行了測(cè)量.

下面是小元的探究過程,請(qǐng)補(bǔ)充完整:

1)下表是點(diǎn)P上的不同位置,畫圖、測(cè)量,得到線段AP,PC,AC長(zhǎng)度的幾組值,如下表:

AP/cm

0

1.00

2.00

3.00

4.00

5.00

6.00

PC/cm

0

1.21

2.09

2.69

m

2.82

0

AC/cm

0

0.87

1.57

2.20

2.83

3.61

6.00

①經(jīng)測(cè)量m的值是 (保留一位小數(shù)).

②在AP,PCAC的長(zhǎng)度這三個(gè)量中,確定的長(zhǎng)度是自變量,的長(zhǎng)度和 的長(zhǎng)度都是這個(gè)自變量的函數(shù);

2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)ACP為等腰三角形時(shí),AP的長(zhǎng)度約為 cm(保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在RtABC中∠C90°,兩條直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c.如圖②,現(xiàn)將與RtABC全等的四個(gè)直角三角形拼成一個(gè)正方形EFMN

1)根據(jù)勾股定理的知識(shí),請(qǐng)直接寫出a,bc之間的數(shù)量關(guān)系;

2)若正方形EFMN的面積為64,RtABC的周長(zhǎng)為18,求RtABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展黃梅戲演唱比賽,組委會(huì)將本次比賽的成績(jī)(單位:分)進(jìn)行整理,并繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖(不完整)

請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:

1)求出a,b的值并補(bǔ)全頻數(shù)分布直方圖.

2)將此次比賽成績(jī)分為三組:A50x60;B60x80;C80x100.若按照這樣的分組方式繪制扇形統(tǒng)計(jì)圖,則其中C組所在扇形的圓心角的度數(shù)是多少?

3)學(xué)校準(zhǔn)備從不低于90分的參賽選手中任選2人參加市級(jí)黃梅戲演唱比賽,求都取得了95分的小欣和小怡同時(shí)被選上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果拋物線C1的頂點(diǎn)在拋物線C2上,拋物線C2的頂點(diǎn)也在拋物線C1上,那么我們稱拋物線C1C2為“互相關(guān)聯(lián)”的拋物線.如圖,已知拋物線是“互相關(guān)聯(lián)”的拋物線,點(diǎn)A,B分別是拋物線C1,C2的頂點(diǎn),拋物線C2經(jīng)過點(diǎn)D6,-1.

1)直接寫出點(diǎn)AB的坐標(biāo)和拋物線C2的解析式.

2)拋物線C2上是否存在點(diǎn)E,使得ABE是以AB為直角邊的直角三角形?如果存在,請(qǐng)求出點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,弓形中,,.若點(diǎn)在優(yōu)弧上由點(diǎn)移動(dòng)到點(diǎn),記的內(nèi)心為,點(diǎn)隨點(diǎn)的移動(dòng)所經(jīng)過的路徑長(zhǎng)為( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)施校園文化公園化戰(zhàn)略,提升校園文化品位,在“回贈(zèng)母校一棵樹”活動(dòng)中.武漢某中學(xué)準(zhǔn)備在校園內(nèi)空地上種植桂花樹、香樟樹、柳樹、木棉樹,為了解學(xué)生喜愛的樹種情況,隨機(jī)調(diào)查了該校部分學(xué)生,并將調(diào)查結(jié)果整理后制成了如圖統(tǒng)計(jì)圖

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答以下問題:

1)接受問卷調(diào)查的學(xué)生共有 名,扇形統(tǒng)計(jì)圖中“喜歡香樟樹”部分所對(duì)應(yīng)扇形的圓心角為 ,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該校共有900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中喜歡桂花樹和木棉樹的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象與軸分別交于點(diǎn)、,且過點(diǎn).

1)求二次函數(shù)表達(dá)式;

2)若點(diǎn)為拋物線上第一象限內(nèi)的點(diǎn),且,求點(diǎn)的坐標(biāo);

3)在拋物線上(下方)是否存在點(diǎn),使?若存在,求出點(diǎn)軸的距離;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊由長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案