【題目】(1)如圖①,在中,,,,則的值是_______.
(2)如圖②,在正方形中,,點是平面上一動點,且,連接,在上方作正方形,求線段的最大值.
問題解決:(3)如圖③,半徑為6,在中,,點在上,點在內(nèi),且.當點在圓上運動時,求線段的最小值.
【答案】(1);(2);(3)3
【解析】
(1)根據(jù)勾股定理算出AC,再根據(jù)正切的定義可得結果;
(2)根據(jù)題意得出當三點共線,且在的延長線上時,線段取得最大值,即此時CF最大;
(3)作的外接圓,連接,設交劣弧于點,則,可得當點與點重合時,線段取得最小值,延長交圓于點,連接,證明得出,從而可得,根據(jù),在△ABF中,利用勾股定理列出方程,解得AC2,在△AOC中,求出OC即可.
解:(1)∵,,,
∴AC=,
∴tanA=;
(2),點為定點,
點在以為圓心,長為半徑的圓上運動.
當三點共線,且在的延長線上時,線段取得最大值,
在正方形中,,
最大=5+2=7,
四邊形是正方形,
,
線段的最大值為;
(3)如圖①,延長交于點,連接.
在中,且,
的大小不變.
又點在上,點在內(nèi),且的半徑為6,
的大小,弦的長均為定值.
作的外接圓,則點在劣弧上(不包括端點),
如圖②,連接,設交劣弧于點,則,且當點與點重合時,線段取得最小值.
延長交圓于點,連接,
,
經(jīng)過點,
,點在上,
,
,
又,
,
,
又,
,
,
,設,則,,
,
又,
在中,,解得,
,
在中,,
線段的最小值是3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=8,BC=12,點E是邊BC上一點,BE=5,點F是射線BA上一動點,連接EF,將△BEF沿著EF折疊,使B點的對應點P落在長方形一邊的垂直平分線上,連接BP,則BP的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以點O為圓心,OE為半徑作優(yōu)弧EF,連接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取點A,B(點B在點A的順時針方向)且使AB=2,以AB為邊向弧內(nèi)作正三角形ABC.
(1)發(fā)現(xiàn):不論點A在弧上什么位置,點C與點O的距離不變,點C與點O的距離是 ;點C到直線EF的最大距離是 .
(2)思考:當點B在直線OE上時,求點C到OE的距離,在備用圖1中畫出示意圖,并寫出計算過程.
(3)探究:當BC與OE垂直或平行時,直接寫出點C到OE的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解九年級男生1000米長跑的成績,從中隨機抽取了50名男生進行測試,根據(jù)測試評分標準,將他們的得分進行統(tǒng)計后分為A、B、C、D四等,并繪制成下面的頻數(shù)分布表和扇形統(tǒng)計圖
等級 | 成績(得分) | 頻數(shù)(人數(shù)) | 頻率 |
A | 9~10分 | x | m |
B | 8~7 | 23 | 0.46 |
C | 6~5 | y | n |
D | 5分以下 | 3 | 0.06 |
(1)試直接寫出x,y,m,n的值;
(2)求表示得分為C等的扇形的圓心角的度數(shù);
(3)如果該校九年級共有男生400名,試估計這400名男生中成績達到A等和B等的人數(shù)共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2020年伊始,全國發(fā)生了傳播速度快、感染范圍廣、防控難度大的新冠肺炎疫情.根據(jù)教育部提出的2020年春節(jié)延期開學,“停課不停學”的相關要求,很多學校開展了線上授課相關工作.為了更好地提高學生線上授課的效果,某中學進行了線上授課問卷調查.其中一項調查是:你認為影響師生互動的最主要因素是A.教師的授課理念;B.網(wǎng)絡配麥等硬件問題;C.科目特點;D.學生的配合情況,針對這個題目,問卷時要求每位同學必須且只能選擇其中一項.現(xiàn)隨機抽取了若干名學生的調查問卷,將所得數(shù)據(jù)進行整理,制成如下條形統(tǒng)計圖和扇形統(tǒng)計圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學生中認為影響師生互動最主要因素的眾數(shù)為____________;
(3)已知該校有2400名學生,請你估計該校學生中認為影響師生互動的最主要因素是“C.科目特點”的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“雪龍”號考察船在某海域進行科考活動,在點 A 處測得小島C 在它的東北方向上,它沿南偏東37°方向航行 2 海里到達點 B 處,又測得小島C 在它的北偏東23°方向上(如圖所示),求“雪龍”號考察船在點 B 處與小島C 之間的距離.(參考數(shù)據(jù): sin22°0.37 , cos22°0.93 , tan 22° 0.40 , 1.4 , 1.7 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點C順時針旋轉得到,其中點A′與點A是對應點,點B′與點B是對應點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。
A. 4 B. 6 C. 3 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中正確的個數(shù)是( )
①過三點可以確定一個圓
②直角三角形的兩條直角邊長分別是5和12,那么它的外接圓半徑為6.5
③如果兩個半徑為2厘米和3厘米的圓相切,那么圓心距為5厘米
④三角形的重心到三角形三邊的距離相等.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)中的x與y的部分對應值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | … |
給出以下結論:(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;(2)當﹣<x<2時,y<0;(3)已知點A(x1,y1)、B(x2,y2)在函數(shù)的圖象上,則當﹣1<x1<0,3<x2<4時,y1>y2.上述結論中正確的結論個數(shù)為( 。
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com