【題目】2020年春節(jié)前夕“新型冠狀病毒”爆發(fā),疫情就是命令,防控就是使命.全國(guó)各地馳援武漢的醫(yī)護(hù)工作者,踐行醫(yī)者仁心的使命與擔(dān)當(dāng),舍小家,為大家,用自己的專業(yè)知識(shí)與血肉之軀構(gòu)筑起全社會(huì)抗擊疫情的鋼鐵長(zhǎng)城.下面是29日當(dāng)天全國(guó)部分省市馳援武漢醫(yī)護(hù)工作者的人數(shù)統(tǒng)計(jì)圖(不完整).

請(qǐng)解答下列問(wèn)題:

1上述省市29日當(dāng)天馳援武漢的醫(yī)護(hù)工作者的總?cè)藬?shù)為   人;

請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)請(qǐng)求出扇形統(tǒng)計(jì)圖中“山東”所對(duì)應(yīng)扇形的圓心角的度數(shù);

3)本次山東馳援武漢的醫(yī)護(hù)工作者中,有5人報(bào)名去重癥區(qū),王醫(yī)生和李醫(yī)生就在其中,若從報(bào)名的5人中隨機(jī)安排2人,求同時(shí)安排王醫(yī)生和李醫(yī)生的概率.

【答案】(1)①5000;②見(jiàn)解析;(2)72°;(3

【解析】

1)①用遼寧馳援武漢的醫(yī)護(hù)工作者的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);
②先計(jì)算出山東援武漢的醫(yī)護(hù)工作者的人數(shù),然后補(bǔ)全圖形統(tǒng)計(jì)圖;
2)用山東援武漢的醫(yī)護(hù)工作者的人數(shù)所占的百分比乘以360°得到扇形統(tǒng)計(jì)圖中山東所對(duì)應(yīng)扇形的圓心角的度數(shù);
3)畫樹狀圖(用AD表示王醫(yī)生和李醫(yī)生)展示所有20種等可能的結(jié)果數(shù),再找出同時(shí)安排王醫(yī)生和李醫(yī)生的結(jié)果數(shù),然后根據(jù)概率公式求解.

1)①1000÷20%5000,

所以上述省市29日當(dāng)天馳援武漢的醫(yī)護(hù)工作者的總?cè)藬?shù)為5000人;

故答案為5000

②山東援武漢的醫(yī)護(hù)工作者的人數(shù)為5000100079795350007%+6%+6%+6%)=1000(人),

條形統(tǒng)計(jì)圖補(bǔ)充為:

2)扇形統(tǒng)計(jì)圖中“山東”所對(duì)應(yīng)扇形的圓心角的度數(shù)=360°×72°;

3)畫樹狀圖為:(用A、D表示王醫(yī)生和李醫(yī)生)

共有20種等可能的結(jié)果數(shù),其中同時(shí)安排王醫(yī)生和李醫(yī)生的結(jié)果數(shù)為2,

所以同時(shí)安排王醫(yī)生和李醫(yī)生的概率=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是某企業(yè)甲、乙兩位員工的能力測(cè)試結(jié)果的網(wǎng)狀圖,以O為圓心的五個(gè)同心圓分別代表能力水平的五個(gè)等級(jí)由低到高分別賦分15分,由原點(diǎn)出發(fā)的五條線段分別指向能力水平的五個(gè)維度,網(wǎng)狀圖能夠更加直觀的描述測(cè)試者的優(yōu)勢(shì)和不足,觀察圖形,有以下幾個(gè)推斷:

①甲和乙的動(dòng)手操作能力都很強(qiáng);

②缺少探索學(xué)習(xí)的能力是甲自身的不足;

③與甲相比乙需要加強(qiáng)與他人的溝通合作能力;

④乙的綜合評(píng)分比甲要高.

其中合理的是(

A.①③B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線鈾交于兩點(diǎn)(點(diǎn)作點(diǎn)的左側(cè)),與軸交于點(diǎn),點(diǎn)為拋物線的對(duì)稱軸右側(cè)圖象上的一點(diǎn).

1a的值為_ ,拋物線的頂點(diǎn)坐標(biāo)為_ ;

2)設(shè)拋物線在點(diǎn)和點(diǎn)之間部分(含點(diǎn)和點(diǎn))的最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為,求關(guān)于的函數(shù)表達(dá)式,并寫出自變量的取值范圍;

3)當(dāng)點(diǎn)的坐標(biāo)滿足:時(shí),連接,若為線段上一點(diǎn),且分四邊形的面積為相等兩部分,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( 。

A.經(jīng)過(guò)有交通信號(hào)燈的路口,遇到綠燈是必然事件

B.拋擲一枚均勻的硬幣,10次都是正面朝上是隨機(jī)事件

C.明天下雨的概率是40%”就是說(shuō)明天有40%的時(shí)間都在下雨

D.從裝有3個(gè)紅球和4個(gè)黑球的袋子里摸出一個(gè)球是紅球的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在數(shù)學(xué)實(shí)踐活動(dòng)課中測(cè)景路燈的高度,如圖,已知她的目高AB1.5米,街為站在A處看路燈頂端P的仰角為30°.再往前走2米站在C處,看路燈頂端P的仰角為45°,求路燈頂端P到地面的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖,拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),連接,點(diǎn)為拋物線對(duì)稱軸上一動(dòng)點(diǎn).

1)求直線的函數(shù)表達(dá)式;

2)連接,求周長(zhǎng)的最小值;

3)在拋物線上是否存在一點(diǎn).使以為頂點(diǎn)的四邊形是以為邊的平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線與拋物線 相交于和點(diǎn)兩點(diǎn).

⑴求拋物線的函數(shù)表達(dá)式;

⑵若點(diǎn)是位于直線上方拋物線上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);

⑶在拋物線的對(duì)稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線鈾交于兩點(diǎn)(點(diǎn)作點(diǎn)的左側(cè)),與軸交于點(diǎn),點(diǎn)為拋物線的對(duì)稱軸右側(cè)圖象上的一點(diǎn).

1a的值為_ ,拋物線的頂點(diǎn)坐標(biāo)為_

2)設(shè)拋物線在點(diǎn)和點(diǎn)之間部分(含點(diǎn)和點(diǎn))的最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為,求關(guān)于的函數(shù)表達(dá)式,并寫出自變量的取值范圍;

3)當(dāng)點(diǎn)的坐標(biāo)滿足:時(shí),連接,若為線段上一點(diǎn),且分四邊形的面積為相等兩部分,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小婷在放學(xué)路上,看到隧道上方有一塊宣傳中國(guó)﹣南亞博覽會(huì)的豎直標(biāo)語(yǔ)牌CD.她在A點(diǎn)測(cè)得標(biāo)語(yǔ)牌頂端D處的仰角為42°,測(cè)得隧道底端B處的俯角為30°(B,C,D在同一條直線上),AB=10m,隧道高6.5m(即BC=65m),求標(biāo)語(yǔ)牌CD的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)

查看答案和解析>>

同步練習(xí)冊(cè)答案