【題目】如圖,在四邊形ABCD中,AD∥BC,E為BC的中點(diǎn),BC=2AD,EA=ED,AC與ED相交于點(diǎn)F.
(1)求證:四邊形AECD是平行四邊形;
(2)試探究AB、CD之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)AB與AC具有什么位置關(guān)系時(shí),四邊形AECD是菱形?請(qǐng)說(shuō)明理由;若EA=ED=2,求此時(shí)菱形AECD的面積.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)2
【解析】
根據(jù)已知條件,只要證明:AD=EC,AD∥EC即可.
根據(jù)已知條件,想辦法證明:AB=DE,CD=DE即可.
假定四邊形AECD為菱形時(shí),根據(jù)菱形對(duì)角線知:AC⊥ED,又ED∥AB,故猜想AB⊥AC時(shí),四邊形AECD為菱形;求面積時(shí)由菱形面積公式:對(duì)角線乘積的一半即可求解.
解:(1)∵E是BC的中點(diǎn),∴BE=EC=BC,
∵BC=2AD,即AD=
∴AD=BE=EC,又∵AD∥EC,
∴四邊形AECD是平行四邊形.
(2)由(1)知:四邊形AECD是平行四邊形.
∴AE=CD,
又由已知有:AE=ED,∴ED=CD……①
∵AD=BE,AD∥BE,
∴四邊形ABED是平行四邊形,
∴AB=ED……②
結(jié)合①②可知
∴AB=CD.
故AB和CD的數(shù)量關(guān)系為:AB=CD.
(3)當(dāng)AB⊥AC時(shí),四邊形AECD是菱形.
理由如下:∵四邊形ABED是平行四邊形,
∴AB∥DE,
∵AB⊥AC,∴ED⊥AC,
∵四邊形AECD是平行四邊形,
∴四邊形AECD是菱形.
∵AE=DE=2,
∴EF=DF=1,
在Rt△AFE中,AF==,AC=2AF=
∴.
故菱形AECD的面積為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,、分別為軸、軸正半軸上的點(diǎn),以、為邊,在一象限內(nèi)作矩形,且.將矩形翻折,使點(diǎn)與原點(diǎn)重合,折痕為,點(diǎn)的對(duì)應(yīng)點(diǎn)落在第四象限,過(guò)點(diǎn)的反比例函數(shù),其圖象恰好過(guò)的中點(diǎn),則點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy 中,菱形 ABOC 的頂點(diǎn) O 在坐標(biāo)原點(diǎn),邊 BO 在 x 軸的負(fù)半軸上,頂點(diǎn) C的坐標(biāo)為(﹣3,4),反比例函數(shù) y 的圖象與菱形對(duì)角線 AO 交于 D 點(diǎn),連接 BD,當(dāng) BD⊥x 軸時(shí),k的值是( )
A.B.C.﹣12D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)都是實(shí)數(shù),且.我們規(guī)定:滿足不等式的實(shí)數(shù)的所有值的全體叫做閉區(qū)間、表示為.對(duì)于一個(gè)函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)時(shí),有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此一次函數(shù)的解析式;
(3)若實(shí)數(shù)滿足.且,當(dāng)二次函數(shù)是閉區(qū)間上的“閉函數(shù)”時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是函數(shù)上兩點(diǎn),為一動(dòng)點(diǎn),作軸,軸,下列說(shuō)法正確的是( )
①;②;③若,則平分;④若,則
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB:BC=3:4,點(diǎn)E是對(duì)角線BD上一動(dòng)點(diǎn)(不與點(diǎn)B,D重合),將矩形沿過(guò)點(diǎn)E的直線MN折疊,使得點(diǎn)A,B的對(duì)應(yīng)點(diǎn)G,F分別在直線AD與BC上,當(dāng)△DEF為直角三角形時(shí),CN:BN的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為4,點(diǎn)在的邊上,且,與關(guān)于所在的直線對(duì)稱,將按順時(shí)針?lè)较蚶@點(diǎn)旋轉(zhuǎn)得到,連接,則線段的長(zhǎng)為( )
A.4B.C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況(新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有多少人?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,“體育”對(duì)應(yīng)的圓心角的度數(shù)是?
(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂(lè)節(jié)目的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE是O的直徑,點(diǎn)A和點(diǎn)D是⊙O上的兩點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BE延長(zhǎng)線于點(diǎn).
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AB=AC,CE=2,求⊙O半徑的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com