【題目】某市為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地做決策,自來水公司隨機抽取部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解決下列問題:
(1)此次抽樣調(diào)查的樣本容量是 .
(2)補全頻數(shù)分布直方圖.
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價格?
【答案】
(1)100
(2)解:“15噸﹣20噸”部分的戶數(shù)為100﹣(10+38+24+8)=20(戶),
補全圖形如下:
(3)解:6× =4.08(萬戶),
答:該地區(qū)6萬用戶中約有4.08萬用戶的用水全部享受基本價格
【解析】解:(1)此次抽樣調(diào)查的總戶數(shù)是10÷10%=100(戶),
所以答案是:100;
【考點精析】本題主要考查了總體、個體、樣本、樣本容量和頻數(shù)分布直方圖的相關(guān)知識點,需要掌握所要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本,樣本中個體的數(shù)目叫這個樣本的容量(樣本容量沒有單位);特點:①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計圖與頻數(shù)分布直方圖)才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,對△ABC進行循環(huán)反復的軸對稱或中心對稱變換,若原來點A的坐標是(a,b),則經(jīng)過第2018次變換后所得的A點坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知點A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的邊AC上任意一點,△ABC經(jīng)過平移后得到△A1B1C1,點P的對應點為P1(a+6,b-2).
(1)直接寫出點C1的坐標;
(2)在圖中畫出△A1B1C1;
(3)求△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一定范圍內(nèi),彈簧的長度x(cm)與它所掛物體的重量y(g)之間滿足關(guān)系式y=kx+b.已知掛重為50 g時,彈簧長12.5 cm;掛重為200 g時,彈簧長20 cm;那么當彈簧長15 cm時,掛重為( )
A. 80 g B. 100 g C. 120 g D. 150 g
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學習經(jīng)驗,他想到了方程與函數(shù)的關(guān)系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解. 根據(jù)以上方程與函數(shù)的關(guān)系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.
佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數(shù)的圖象.
x | … | ﹣3 | ﹣ | ﹣2 | ﹣ | ﹣1 | ﹣ | 0 | 1 | 2 | … | ||
y | … | ﹣8 | ﹣ | 0 | m | ﹣ | ﹣2 | ﹣ | 0 | 12 | … |
(1)直接寫出m的值,并畫出函數(shù)圖象;
(2)根據(jù)表格和圖象可知,方程的解有個,分別為;
(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學活動課上,數(shù)學興趣小組的幾名同學探究用個面積為的小正方形紙片剪拼成一個面積為的大正方形,下面是他們探究的部分結(jié)果:
(1)如圖1,當時,拼成的大正方形的邊長為_________;
(2)如圖2,當時,拼成的大正方形的邊長為__________;
(3)如圖3,當時,①拼成的大正方形的邊長為__________.
②沿著正方形紙片邊的方向能否載出一塊面積為的長方形紙片,使它的長寬之比為3:2?若能,請給出一種合適的裁剪方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,O為數(shù)軸的原點,A,B分別為數(shù)軸上的兩點,A點對應的數(shù)為﹣30,B點對應的數(shù)為100.
(1)A、B的中點C對應的數(shù)是 ;
(2)若點D數(shù)軸上A、B之間的點,D到B的距離是D到A的距離的3倍,求D對應的數(shù).(提示:數(shù)軸上右邊的點對應的數(shù)減去左邊對應的數(shù)等于這兩點間的距離);
(3)若P點和Q點是數(shù)軸上的兩個動點,當P點從B點出發(fā),以6個單位長度/秒的速度向左運動時,Q點也從A點出發(fā),以4個單位長度/秒的速度向右運動,設(shè)兩點在數(shù)軸上的E點處相遇,那么E點對應的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組對角互補的凸四邊形叫做“對補四邊形”,性質(zhì):“對補四邊形”一定是圓內(nèi)接四邊形.
(1)概念理解:請你根據(jù)上述描述定義舉一個“對補四邊形”的例子;
(2)問題探究:如圖1,在對補四邊形ABCD中,如果∠A=∠C,試探究AB、AD、BC、CD之間的數(shù)量關(guān)系,并說明理由;
(3)應用拓展:如圖2,在四邊形ABCD中,AB≠BC,∠A=∠C=90°,連接BD,將△BCD沿BD折疊,得到△BFD.
①連接AF,四邊形ABDF是對補四邊形嗎?請說明理由;
②若AB=1,BD=2,且BF把△ABD分成兩個三角形的面積比為1:2,請求出CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com