【題目】如圖,AB垂直平分線段CD(AB>CD),點E是線段CD延長線上的一點,且BE=AB,連接AC,過點D作DG⊥AC于點G,交AE的延長線與點F.
(1)若∠CAB=α,則∠AFG= (用α的代數(shù)式表示);
(2)線段AC與線段DF相等嗎?為什么?
(3)若CD=6,求EF的長.
【答案】(1)45°﹣α;(2)相等,理由見解析;(3)EF=3.
【解析】
(1)根據(jù)等腰三角形的性質得到∠BAE=∠AEB=45°,根據(jù)三角形的內角和即可得到結論;
(2)連接AD,根據(jù)線段垂直平分線的性質得到AC=AD,求得∠ADC=∠ACB=α,于是得到AC=DF;
(3)根據(jù)已知條件得到BD=CB=3,過F作FH⊥CE交CE的延長線于H,得到△EHF是等腰直角三角形,求得FH=HE,根據(jù)全等三角形的性質即可得到結論.
解:(1)∵AB⊥CD,
∴∠ABE=90°,
∵AB=BE,
∴∠BAE=∠AEB=45°,
∵∠CAB=α,∠CDG=90°﹣(90°﹣α)=α=∠EDF.
∴∠AFG=∠AED﹣∠EDF=45°﹣α;
故答案為:45°﹣α;
(2)相等,
證明:連接AD,
∵AB垂直平分線段CD,
∴AC=AD,
∴∠ADC=∠ACB=90°﹣α,
∴∠DAE=∠ADC﹣45°=45°﹣α,
∴∠DAE=∠AFD,
∴AD=DF,
∴AC=DF;
(3)∵CD=6,
∴BD=CB=3,
過F作FH⊥CE交CE的延長線于H,
則△EHF是等腰直角三角形,
∴FH=HE,
∵∠H=∠ABC=90°,∠CAB=∠CDG=∠FDH,AC=AD=DF,
∴△ACB≌△DFH(AAS),
∴FH=CB=3,
∴EF=FH=3.
科目:初中數(shù)學 來源: 題型:
【題目】某地電話撥號入網(wǎng)有兩種收費方式,用戶可以任選其一.
計時制:0.05元/分;
包月制:50元/月(限一部個人住宅電話上網(wǎng)).
此外,每一種上網(wǎng)方式都得加收通信費0.02元/分.
(1)某用戶某月上網(wǎng)的時間為x小時,請你分別寫出兩種收費方式下該用戶應該支付的費用.
(2)若某用戶估計一個月內上網(wǎng)的時間為20小時,你認為采用哪種方式較為合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像過點,,與軸交于另一點,且對稱軸是直線.
(1)求該二次函數(shù)的解析式;
(2)若是上的一點,作交于,當面積最大時,求的坐標;
(3)是軸上的點,過作軸,與拋物線交于,過作軸于.當以、、為頂點的三角形與、、為頂點的三角形相似時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位畫家有若干個邊長為的正方體,他在地面上把它們擺成如圖(三層)的形式,然后,他把露出的表面都涂上顏色.
(1)圖中的正方體一共有多少個?
(2)一點顏色都沒涂上顏色的正方體有多少個?
(3)如果畫家按此方式擺成七層,那又要多少個正方體?同樣涂上顏色,又有多少個正方體沒有涂上一點顏色?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,A點坐標為(-10,0),對角線AC和OB相交于點D且AC·OB=160.若反比例函數(shù)y=(x<0)的圖象經(jīng)過點D,并與BC的延長線交于點E,則S△OCE∶S△OAB=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為( 。
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017山東省菏澤市,第20題,7分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象在第一象限交于A、B兩點,B點的坐標為(3,2),連接OA、OB,過B作BD⊥y軸,垂足為D,交OA于C,若OC=CA.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com