【題目】參照學(xué)習(xí)反比例函數(shù)的過程與方法,探究函數(shù) y1x≠0)的圖象與性質(zhì),因?yàn)?/span> y11,即 y1=﹣+1,所以我們對(duì)比函數(shù) y=﹣來探究畫出函數(shù) y1x≠0 的圖象,經(jīng)歷分析解析式、列表、描點(diǎn)、連線過程得到兩個(gè)函數(shù)的圖像如圖所示.

1)觀察:由 y1圖象可知:

①當(dāng) x0 時(shí),y x的增大而 (填增大減小

y1 的圖象可以由 y=﹣的圖象向 平移 個(gè)單位長度得到.

y1 的取值范圍是

2)探究:①若直線 l 對(duì)應(yīng)的函數(shù)關(guān)系式為 y2kx+b,且經(jīng)過點(diǎn)(﹣13)和點(diǎn)(1,﹣1),請(qǐng)?jiān)俳o出的平面直角坐標(biāo)系中畫出 y2,若 y1y2,則 x 的取值范圍為

Am1,n1),Bm2,n2)在函數(shù) y圖象上,且 n1+n22,求 m1+m2 的值.

【答案】1)①增大,②上,1,③y1≠1;(2)①-1<x<0x1,②.

【解析】

1)①②③觀察圖象即可解決問題;

2)①根據(jù)點(diǎn)(﹣1,3)和點(diǎn)(1,﹣1)即可畫出y2kx+b的圖象,可判斷這兩個(gè)點(diǎn)也經(jīng)過y1圖象,所以根據(jù)圖象即可判斷y1y2時(shí)x 的取值范圍.

②分別將A、B兩點(diǎn)代入y中,由n1+n22可得出關(guān)于m1 、m2的等式,對(duì)等式進(jìn)行變形即可得出m1+m2=0.

1)①當(dāng) x0 時(shí),y x的增大而增大;

②向上平移1個(gè)單位得到;

③y1的取值范圍為y1≠1;

2)①因?yàn)楹瘮?shù)y2kx+ b經(jīng)過點(diǎn)(﹣1,3)和點(diǎn)(1,﹣1),

所以其圖象如下:

x=-1代入y1,可求得y1=3,所以點(diǎn)(﹣1,3)也在y1上,

x=1代入y1,可求得y1=-1,所以點(diǎn)(1,-1)也在y1.

所以根據(jù)圖象,若y1>y2,則x的取值范圍為-1<x<0x1.

②∵Am1,n1),Bm2,n2)在函數(shù) y圖象上

n1+n22

,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 是邊長為 2,一個(gè)銳角等于 60°的菱形紙片,將一個(gè)EDF=60°的三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn) D 重合,按順時(shí)針方向旋轉(zhuǎn)這個(gè)三角形紙片,使它的兩邊分別交 CB,BA(或它們的延長線于點(diǎn) E, F;

①當(dāng) CE=AF 時(shí),如圖①,DE DF 的數(shù)量關(guān)系是 ;

②繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng) CE≠AF 時(shí),如圖②,(1)的結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說明理由;

③再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn) E,F(xiàn) 分別在 CB,BA 的延長線上時(shí),如圖③, 請(qǐng)直接寫出 DE DF 的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來網(wǎng)約車十分流行,初三某班學(xué)生對(duì)美團(tuán)滴滴兩家網(wǎng)約車公司各10名司機(jī)月收入進(jìn)行了一項(xiàng)抽樣調(diào)查,司機(jī)月收入(單位:千元)如圖所示:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

1)完成表格填空;

2)若從兩家公司中選擇一家做網(wǎng)約車司機(jī),你會(huì)選哪家公司,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣x﹣6.

(1)畫出函數(shù)的圖象;

(2)觀察圖象,指出方程x2﹣x﹣6=0的解及不等式x2﹣x﹣6>0解集;

(3)求二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)所構(gòu)成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中∠ACB90°、∠CAB30°,ABD 是等邊三角形將四邊形 ACBD 折疊,使點(diǎn) D 與點(diǎn) C 重合,HK 為折痕,則cosACH 的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù))的圖象如圖所示,對(duì)稱軸為,給出下列結(jié)論:①; ②當(dāng)時(shí),;③;④,其中正確的結(jié)論有(

A.①②B.①③C.①③④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,平分,交于點(diǎn),交于點(diǎn),,則的長為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“用三角板畫圓的切線”的畫圖過程

如圖1,已知圓上一點(diǎn)A,畫過A點(diǎn)的圓的切線.

畫法:(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;

(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過點(diǎn)B,畫出另一條直角邊所在的直線AD.

所以直線AD就是過點(diǎn)A的圓的切線.

請(qǐng)回答:該畫圖的依據(jù)是_______________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+cx,y的對(duì)應(yīng)值如下表:

下列關(guān)于該函數(shù)性質(zhì)的判斷

①該二次函數(shù)有最大值;②當(dāng)x0時(shí),函數(shù)yx的增大而減;③不等式y<﹣1的解集是﹣1x2;④關(guān)于x的一元二次方程ax2+bx+c0的兩個(gè)實(shí)數(shù)根分別位于﹣1xx2之間.其中正確結(jié)論的個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案