【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn)(A在B的左邊),與y軸交于點(diǎn)C,拋物線上有一動(dòng)點(diǎn)P

(1)若A(﹣2,0),C(0,﹣4)

①求拋物線的解析式;

②在①的情況下,若點(diǎn)P在第四象限運(yùn)動(dòng),點(diǎn)D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.

(2)若點(diǎn)P在第一象限運(yùn)動(dòng),且a<0,連接AP、BP分別交y軸于點(diǎn)E、F,則問 是否與a,c有關(guān)?若有關(guān),用a,c表示該比值;若無關(guān),求出該比值.

【答案】(1)①拋物線解析式為y=x2﹣4;②0<S四邊形BDQP;(2)的值與a,c無關(guān),比值為1.

【解析】試題分析:(1)①把 A(-2,0),C0,-4)代入,求得ac的值,即可得拋物線的解析式;②連接DB、OP,設(shè)P, ),因A(-2,0),對(duì)稱軸為軸,可得B20),即可得 ,再由點(diǎn)P在第四象限運(yùn)動(dòng),可得x單位取值范圍,由拋物線的圖象即可得BDP的取值范圍為,因 即可得平行四邊形BDQP面積的取值范圍為;(2)過點(diǎn)PPGAB,設(shè)A0),B0),P ),由PG軸,根據(jù)相似三角形的判定方法可得 , ,再由相似三角形的性質(zhì)可得 ,代入數(shù)值可得 ,把這兩個(gè)式子相加可得,令,即可得 ,所以,即 ,所以,即可得

所以可得結(jié)論、無關(guān),比值為1.

試題解析:

(1)①

②連接DB、OP,設(shè)P(,

∵A(-2,0),對(duì)稱軸為

∴B(2,0)

∵點(diǎn)P在第四象限運(yùn)動(dòng)

∴由拋物線的圖象可得:

(2)過點(diǎn)P作PG⊥AB,設(shè)A(,0),B(,0),P(

∴PG∥

,

,

,

∵當(dāng)時(shí),∴,即

、無關(guān),比值為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位“粗心”的同學(xué)在做加減運(yùn)算時(shí),將“﹣100”錯(cuò)寫成“+100”進(jìn)行運(yùn)算,這樣他得到的結(jié)果比正確答案(
A.少100
B.少200
C.多100
D.多200

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的塑料袋中裝有紅色、白色球共40個(gè),除顏色外其它都相同,小明通過多次摸球試驗(yàn)后發(fā)現(xiàn),其中摸到紅色球的頻率穩(wěn)定在15%左右,則口袋中紅色球可能 ( )

A. 4個(gè) B. 6個(gè) C. 34個(gè) D. 36個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三角形的各邊長擴(kuò)大為原來的5倍,則此三角形的周長擴(kuò)大為原來的倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:在平面直角坐標(biāo)系xOy中,如果一條拋物線平移后得到的拋物線經(jīng)過原拋物線的頂點(diǎn),那么這條拋物線叫做原拋物線的過頂拋物線

如下圖,拋物線F2都是拋物線F1的過頂拋物線,設(shè)F1的頂點(diǎn)為A,F(xiàn)2的對(duì)稱軸分別交F1、F2于點(diǎn)D、B,點(diǎn)C是點(diǎn)A關(guān)于直線BD的對(duì)稱點(diǎn)

1如圖1,如果拋物線y=x 2的過頂拋物線為y=ax2+bx,C2,0,那么

a= ,b=

如果順次連接A、B、C、D四點(diǎn),那么四邊形ABCD為( )

A平行四邊形 B矩形 C菱形 D正方形

2如圖2,拋物線y=ax2+c的過頂拋物線為F2,B2,c1).四邊形ABCD的面積

3如果拋物線的過頂拋物線是F2,四邊形ABCD的面積為,請(qǐng)直接寫出點(diǎn)B的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的一個(gè)角是80°,則它頂角的度數(shù)是(  )
A.80°
B.80°或20°
C.80°或50°
D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】式子﹣6﹣8+10﹣5讀作或讀作

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明跳起投籃,球出手時(shí)離地面m,球出手后在空中沿拋物線路徑運(yùn)動(dòng),并在距出手點(diǎn)水平距離4m處達(dá)到最高度4m.已知籃筐中心距地面3m,與球出手時(shí)的水平距離為8m,建立如圖所示的平面直角坐標(biāo)系.

(1)求此拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)此次投籃,球能否直接命中籃筐中心?若能,請(qǐng)說明理由;若不能,在出手的角度和力度都不變的情況下,球出手時(shí)距離地面多少米可使球直接命中籃筐中心?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、F、CD在同一條直線上,已知AF=DCA=D,BCEF,求證:AB=DE

【答案】證明見解析.

【解析】試題分析:欲證明AB=DE,只要證明△ABC≌△DEF即可.

試題解析:∵AF=CD

∴AC=DF,

∵BC∥EF

∴∠ACB=∠DFE,

△ABC△DEF中,

,

∴△ABC≌△DEFASA),

∴AB=DE

考點(diǎn):全等三角形的判定與性質(zhì).

型】解答
結(jié)束】
25

【題目】如圖, ,AE=BD,點(diǎn)DAC邊上, ,AEBD相交于點(diǎn)O

1)求證:△AEC≌△BED

2)若,求BDE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案