【題目】如圖1,已知∠AOB,OA=OB,點(diǎn)EOB邊上,四邊形AEBF是平行四邊形.

1)請(qǐng)你只用無(wú)刻度的直尺在圖中畫(huà)出∠AOB的平分線.(保留作圖痕跡,不要求寫(xiě)作法)

2)如圖2,請(qǐng)?jiān)僬f(shuō)出兩種畫(huà)角平分線的方法(要求畫(huà)出圖形,并說(shuō)明你使用的工具和依據(jù))

【答案】1)如圖2,OP為所作;見(jiàn)解析;(2)如圖1,利用有刻度的直尺畫(huà)出AB的中點(diǎn)M,則OM為∠AOB的平分線;見(jiàn)解析.

【解析】

1AB、EF相交于點(diǎn)P,如圖2,利用平行四邊形的性質(zhì)得到PA=PB,然后根據(jù)等腰三角形的性質(zhì)可判斷OP平分∠AOB

2)方法一:如圖1,利用有刻度的直尺和腰三角形的性質(zhì)畫(huà)圖;

方法二:如圖3,利用圓規(guī)和直尺,根據(jù)基本作圖作∠AOB的平分線ON

1)如圖2,OP為所作;

2)方法一:如圖1,利用有刻度的直尺畫(huà)出AB的中點(diǎn)M,則OM為∠AOB的平分線;

方法二:如圖3,利用圓規(guī)和直尺作∠AOB的平分線ON,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,OE垂直于弦AB,垂足為點(diǎn)D,交⊙O于點(diǎn)C,∠EAC=∠CAB.

(1)求證:直線AE是⊙O的切線;
(2)若AB=8,sin∠E= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點(diǎn)A為圓心,對(duì)角線AC的長(zhǎng)為半徑作弧交數(shù)軸的正半軸于M,則點(diǎn)M的表示的數(shù)為________________

【答案】

【解析】ACAM,∴AM

型】填空
結(jié)束】
11

【題目】ABC中,AB10,AC2,BC邊上的高AD6,則另一邊BC等于_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且AB=AE,延長(zhǎng)ABDE的延長(zhǎng)線交于點(diǎn)F.下列結(jié)論中:①ABC≌△EAD;②ABE是等邊三角形;③AD=AF;④SABE=SCEF其中正確的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點(diǎn)D,AM⊥CD于點(diǎn)M,連接AD,BD.

(1)求證:∠ADC=∠ABD;
(2)若AD=2 ,⊙O的半徑為3,求MD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),點(diǎn)P、Q在DC邊上,且PQ= DC.若AB=16,BC=20,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( 。.

A. “打開(kāi)電視機(jī),正在播放《動(dòng)物世界》”是必然事件

B. 某種彩票的中獎(jiǎng)概率為,說(shuō)明每買(mǎi)1000張,一定有一張中獎(jiǎng)

C. 拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為

D. 想了解長(zhǎng)沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的證明:

已知:如圖,點(diǎn)DE,F分別在線段ABBC,AC上,連接DE、EF,DM平分∠ADEEF于點(diǎn)M,∠1+2=180°.

求證: B =BED

證明:∵∠1+2=180°(已知),

又∵∠1+BEM=180°( ),

∴∠2=BEM   ),

DM_______________________________________________).

∴∠ADM =B_________________________________________),

MDE =BED_______________________________________).

又∵DM平分∠ADE (已知)

∴∠ADM =MDE ( )

∴∠B =BED(等量代換).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一枚運(yùn)載火箭從地面L處發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從位于距發(fā)射架底部4km處的地面雷達(dá)站R(LR=4)測(cè)得火箭底部的仰角為43°.1s后,火箭到達(dá)B點(diǎn),此時(shí)測(cè)得火箭底部的仰角為45.72°.這枚火箭從A到B的平均速度是多少 (結(jié)果取小數(shù)點(diǎn)后兩位)?

(參考數(shù)據(jù):sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,
sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)

查看答案和解析>>

同步練習(xí)冊(cè)答案