【題目】(1)解方程:
(2)如圖,在⊙O中,OA⊥OB,∠A=20°,求∠B的度數(shù).
【答案】(1)x=1(2)25°
【解析】試題分析:(1)方程兩邊同時(shí)乘以x-2,化分式方程為整式方程,解整式方程即可,解分式方程一定要檢驗(yàn);(2)連接OC,根據(jù)圓周角與圓心角的關(guān)系可得∠ACB=45°,由因OA=OC,∠A=20°可得∠ACO=20°,即可得∠OCB=25°,再由OC=OB,根據(jù)等腰三角形的性質(zhì)可得∠B=25°.
試題解析:
(1)去分母:1-(x+2)=2(x-2)
去括號(hào):1-x-2=2x-4
移項(xiàng):-x-2x=-4-1+2
合并: -3x=-3
系數(shù)化為1: x=1
經(jīng)檢驗(yàn),x=1是原方程的解
(2)連接OC
∵OA⊥OB,
∴∠AOB=90°
∴∠ACB=45°
又∴OA=OC,∠A=20°
∴∠ACO=20°
∴∠OCB=25°
又∵OC=OB
∴∠B=25°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=﹣2x2的圖象如何移動(dòng),就得到y(tǒng)=﹣2x2+4x+1的圖象( )
A.向左移動(dòng)1個(gè)單位,向上移動(dòng)3個(gè)單位
B.向左移動(dòng)1個(gè)單位,向下移動(dòng)3個(gè)單位
C.向右移動(dòng)1個(gè)單位,向上移動(dòng)3個(gè)單位
D.向右移動(dòng)1個(gè)單位,向下移動(dòng)3個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用邊長(zhǎng)相等的正三角形和正六邊形地磚拼地板,在每個(gè)頂點(diǎn)周?chē)?/span>a塊正三角形和b塊正六邊形的地磚(ab≠0),則a-b的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠B=∠C=40°.點(diǎn)D在線段BC上運(yùn)動(dòng)(點(diǎn)D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BAD=20°時(shí),∠EDC=__________°;
(2)當(dāng)DC等于多少時(shí),△ABD≌△DCE?試說(shuō)明理由;
(3)△ADE能成為等腰三角形嗎?若能,請(qǐng)直接寫(xiě)出此時(shí)∠BAD的度數(shù);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于代數(shù)式a+2b的敘述正確的是( )
A.a與b的和的2倍
B.a與2的和的b倍
C.a與2b的和
D.a加上2與b的和
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這是某市部分簡(jiǎn)圖,為了確定各建筑物的位置:
(1)請(qǐng)你以火車(chē)站為原點(diǎn)建立平面直角坐標(biāo)系.
(2)寫(xiě)出市場(chǎng)的坐標(biāo)為;超市的坐標(biāo)為 .
(3)請(qǐng)將體育場(chǎng)為A、賓館為C和火車(chē)站為B看作三點(diǎn)用線段連起來(lái),得△ABC,然后將此三角形向下平移4個(gè)單位長(zhǎng)度,畫(huà)出平移后的△A1B1C1 , 并求出其面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的推理過(guò)程,并在括號(hào)內(nèi)填上依據(jù).
如圖,E為DF上的一點(diǎn),B為AC上的一點(diǎn),∠1=∠2,∠C=∠D,求證:AC∥DF
證明:∵∠1=∠2()
∠1=∠3( 對(duì)角線相等)
∴∠2=∠3()
∴∥()
∴∠C=∠ABD()
又∵∠C=∠D(已知)
∴∠D=∠ABD()
∴AC∥DF()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com