【題目】如圖,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4 cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2 cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D,E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF。
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
【答案】(1)證明見解析;(2) 能,理由見解析;(3)見解析.
【解析】分析:(1)利用t表示出CD以及AE的長(zhǎng),然后在直角△CDF中,利用直角三角形的性質(zhì)求得DF的長(zhǎng),即可證明;
(2)易證四邊形AEFD是平行四邊形,當(dāng)AD=AE時(shí),四邊形AEFD是菱形,據(jù)此即可列方程求得t的值;
(3)分兩種情況討論即可求解.
詳解:(1)∵直角△ABC中,∠C=90°﹣∠A=30°.
∵CD=4t,AE=2t.
又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;
(2)∵DF∥AB,DF=AE,∴四邊形AEFD是平行四邊形,當(dāng)AD=AE時(shí),四邊形AEFD是菱形,即60﹣4t=2t,解得:t=10,即當(dāng)t=10時(shí),AEFD是菱形;
(3)分兩種情況討論:
①當(dāng)∠EDF=90°時(shí),DE∥BC,∴∠ADE=∠C=30°,∴AD=2AE.
∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=時(shí),∠EDF=90°.
②當(dāng)∠DEF=90°時(shí),DE⊥EF.
∵四邊形AEFD是平行四邊形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°.
∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.
綜上所述:當(dāng)t=或t=12時(shí),△DEF是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A′B′C′,且點(diǎn)B剛好落在A′B′上,若∠A=25°,∠BCA′=45°,則∠A′BA等于( 。
A.30°
B.35°
C.40°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司專銷產(chǎn)品,第一批產(chǎn)品上市40天內(nèi)全部售完.該公司對(duì)第一批產(chǎn)品上市后的市場(chǎng)銷售情況進(jìn)行了跟蹤調(diào)查,調(diào)查結(jié)果如圖所示,其中圖1中的折線表示的是市場(chǎng)日銷售量與上市時(shí)間的關(guān)系;圖2中的折線表示的是每件產(chǎn)品的銷售利潤(rùn)與上市時(shí)間的關(guān)系.
(1)試寫出第一批產(chǎn)品的市場(chǎng)日銷售量與上市時(shí)間的關(guān)系式;
(2)第一批產(chǎn)品上市后,哪一天這家公司市場(chǎng)日銷售利潤(rùn)最大?最大利潤(rùn)是多少萬元?(說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】營(yíng)市公交公司將淘汰所有線路上“冒黑煙”較嚴(yán)重的公交車,計(jì)劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計(jì)在該線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1220萬元,且確保這10輛公交車在該線路的年均載客總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王購買了一套一居室,他準(zhǔn)備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)(單位:米),解答下列問題:
(1)用含 的代數(shù)式表示地面的總面積 ;
(2)已知 ,且客廳面積是衛(wèi)生間面積的 倍,如果鋪 平方米地磚的平均費(fèi)用為 元,那么小王鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察某月日歷,回答下列問題:
觀察圖中的陰影部分的個(gè)數(shù),你知道他們之間有什么關(guān)系嗎?寫出你認(rèn)為正確的一個(gè)結(jié)論;
小強(qiáng)一家外出游玩了天,這天的日期之和是,小強(qiáng)一家?guī)滋?hào)外出的?
像上面第題那樣現(xiàn)在要用一個(gè)方框去框該月歷上的九個(gè)數(shù),這九個(gè)數(shù)的和可能是嗎?如果不能,請(qǐng)說明理由;如果能,請(qǐng)求出框出的這九個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在對(duì)角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為F,則EF的長(zhǎng)為( 。
A.1
B.
C.4﹣2
D.3﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C分別是⊙O上的點(diǎn),∠B=60°,P是直徑CD的延長(zhǎng)線上的一點(diǎn),且AP=AC. 如果AC=3,則PD的長(zhǎng)為______________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com