如圖,△ABC是直角三角形,∠ACB=90°.
(1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應的字母(保留作圖痕跡,不寫作法).
①作△ABC的外接圓,圓心為O;
②以線段AC為一邊,在AC的右側作等邊△ACD;
③連接BD,交⊙O于點E,連接AE,
(2)綜合與運用:在你所作的圖中,若AB=4,BC=2,則:
①AD與⊙O的位置關系是______.
②線段AE的長為______
【答案】分析:(1)①以AB為直徑作圓O即可;
②分別以A、C為圓心,AC長為半徑作弧交于點D,連接AD,CD即可;
③根據(jù)題意連接,找到交點即可.
(2)①可證∠BAD=90°,由切線的判定得出AD與⊙O的位置關系.
②根據(jù)三角形的面積公式即可求出線段AE的長.
解答:解:評分說明:第①小題(2分),第②小題(2分),第③小題(1分).
(1)如圖.若考生作兩條邊或三條邊的垂直平分線不扣分.

(2)①∵AB=4,BC=2,△ACD是等邊三角形,
∴∠BAD=∠BAC+∠CAD=30°+60°=90°,
∴AD與⊙O的位置關系是 相切.
②AD=AC=AB•=2,
BD==2,
AE=AB•AD÷(BD)=
故線段AE的長為
故答案為:相切. 
點評:考查了直角三角形的外接圓,等邊三角形的作法,切線的判定,勾股定理及三角形面積公式,綜合性較強.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,△ABC是直角三角形,BC是斜邊,將△ABP繞A逆時針旋轉后,能夠與△ACP′重合,如果AP=3,那么PP′2的長等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面短文:
如圖①,△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補成矩形,使△ABC的兩個頂點為矩形一邊的兩個端點,第三個頂點落在矩形這一邊的對邊上,那么符合要求的矩形可以畫出兩個矩形ACBD和矩形AEFB(如圖②)精英家教網(wǎng)精英家教網(wǎng)
解答問題:
(1)設圖②中矩形ACBD和矩形AEFB的面積分別為S1、S2,則S1
 
S2(填“>”“=”或“<”).
(2)如圖③,△ABC是鈍角三角形,按短文中的要求把它補成矩形,那么符合要求的矩形可以畫
 
個,利用圖③把它畫出來.
(3)如圖④,△ABC是銳角三角形且三邊滿足BC>AC>AB,按短文中的要求把它補成矩形,那么符合要求的矩形可以畫出
 
個,利用圖④把它畫出來.
(4)在(3)中所畫出的矩形中,哪一個的周長最。繛槭裁?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是直角三角形,∠ACB=90°.
(1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應的字母(保留作圖痕跡,不寫作法)精英家教網(wǎng)
①作△ABC的外接圓,圓心為O;
②以線段AC為一邊,在AC的右側作等邊△ACD;
③連接BD,交⊙O于點E,連接AE,
(2)綜合與運用:在你所作的圖中,若AB=4,BC=2,則:
①AD與⊙O的位置關系是
 

②線段AE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是直角邊長為4的等腰直角三角形,直角邊AB是半圓O1的直徑,半圓O2過C點且與半圓O1相切,則圖中陰影部分的面積是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是直角三角形,∠BAC=90°,AD、AE分別是△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm.
(1)求AD的長;
(2)求△AEC的面積.

查看答案和解析>>

同步練習冊答案